scholarly journals Probing neutrino decay scenarios by using the Earth matter effects on supernova neutrinos

2022 ◽  
Vol 2022 (01) ◽  
pp. 003
Author(s):  
Edwin A. Delgado ◽  
Hiroshi Nunokawa ◽  
Alexander A. Quiroga

Abstract The observation of Earth matter effects in the spectrum of neutrinos coming from a next galactic core-collapse supernova (CCSN) could, in principle, reveal if neutrino mass ordering is normal or inverted. One of the possible ways to identify the mass ordering is through the observation of the modulations that appear in the spectrum when neutrinos travel through the Earth before they arrive at the detector. These features in the neutrino spectrum depend on two factors, the average neutrino energies, and the difference between the primary neutrino fluxes of electron and other flavors produced inside the supernova. However, recent studies indicate that the Earth matter effect for CCSN neutrinos is expected to be rather small and difficult to be observed by currently operating or planned neutrino detectors mainly because of the similarity of average energies and fluxes between electron and other flavors of neutrinos, unless the distance to CCSN is significantly smaller than the typically expected one, ∼ 10 kpc. Here, we are looking towards the possibility if the non-standard neutrino properties such as decay of neutrinos can enhance the Earth matter effect. In this work we show that invisible neutrino decay can potentially enhance significantly the Earth matter effect for both νe and ν̅e channels at the same time for both mass orderings, even if the neutrino spectra between electron and other flavors of neutrinos are very similar, which is a different feature not expected for CCSN neutrinos with standard oscillation without the decay effect.

2019 ◽  
Vol 69 (1) ◽  
pp. 253-278 ◽  
Author(s):  
B. Müller

With myriads of detection events from a prospective Galactic core-collapse supernova, current and future neutrino detectors will be able to sample detailed, time-dependent neutrino fluxes and spectra. This will offer significant possibilities of inferring supernova physics from the various phases of the neutrino signal, ranging from the neutronization burst through the accretion and early explosion phases to the cooling phase. The signal will constrain the time evolution of bulk parameters of the young proto–neutron star, such as its mass and radius, as well as the structure of the progenitor; probe multidimensional phenomena in the supernova core; and constrain the dynamics of the early explosion phase. Aside from further astrophysical implications, supernova neutrinos may also shed light on the properties of matter at supranuclear densities and on open problems in particle physics.


2020 ◽  
Vol 641 ◽  
pp. A177 ◽  
Author(s):  
N. Meza ◽  
J. P. Anderson

Context. The mass of synthesised radioactive material is an important power source for all supernova (SN) types. In addition, the difference of 56Ni yields statistics are relevant to constrain progenitor paths and explosion mechanisms. Aims. Here, we re-estimate the nucleosynthetic yields of 56Ni for a well-observed and well-defined sample of stripped-envelope SNe (SE-SNe) in a uniform manner. This allows us to investigate whether the observed hydrogen-rich–stripped-envelope (SN II–SE SN) 56Ni separation is due to real differences between these SN types or because of systematic errors in the estimation methods. Methods. We compiled a sample of well-observed SE-SNe and measured 56Ni masses through three different methods proposed in the literature: first, the classic “Arnett rule”; second the more recent prescription of Khatami & Kasen (2019, ApJ, 878, 56) and third using the tail luminostiy to provide lower limit 56Ni masses. These SE-SN distributions were then compared to those compiled in this article. Results. Arnett’s rule, as previously shown, gives 56Ni masses for SE-SNe that are considerably higher than SNe II. While for the distributions calculated using both the Khatami & Kasen (2019, ApJ, 878, 56) prescription and Tail 56Ni masses are offset to lower values than “Arnett values”, their 56Ni distributions are still statistically higher than that of SNe II. Our results are strongly driven by a lack of SE-SN with low 56Ni masses, that are, in addition, strictly lower limits. The lowest SE-SN 56Ni mass in our sample is of 0.015 M⊙, below which are more than 25% of SNe II. Conclusions. We conclude that there exist real, intrinsic differences in the mass of synthesised radioactive material between SNe II and SE-SNe (types IIb, Ib, and Ic). Any proposed current or future CC SN progenitor scenario and explosion mechanism must be able to explain why and how such differences arise or outline a bias in current SN samples yet to be fully explored.


2019 ◽  
Author(s):  
Marta Colomer Molla ◽  
Alexis Coleiro ◽  
Damien Dornic ◽  
Vladimir Kulikovskiy ◽  
Massimiliano Lincetto ◽  
...  

2016 ◽  
Vol 42 (12) ◽  
pp. 800-814 ◽  
Author(s):  
A. V. Yudin ◽  
D. K. Nadyozhin ◽  
V. V. Khruschov ◽  
S. V. Fomichev

2011 ◽  
Vol 7 (S279) ◽  
pp. 397-398 ◽  
Author(s):  
Yudai Suwa

AbstractWe present two-dimensional numerical simulations of core-collapse supernova including multi-energy neutrino radiative transfer. We aim to examine the influence of the equation of state (EOS) for the dense nuclear matter. We employ four sets of EOSs, namely, those by Lattimer and Swesty (LS) and Shen et al., which became standard EOSs in the core-collapse supernova community. We reconfirm that not every EOS produces an explosion in spherical symmetry, which is consistent with previous works. In two-dimensional simulations, we find that the structure of the accretion flow is significantly different between LS EOS and Shen EOS, inducing an even qualitatively different evolution of the shock wave, namely, the LS EOS leads to shock propagation beyond 2000 km from the center, while the Shen EOS shows only oscillations within 500 km. The possible origins of the difference are discussed.


2020 ◽  
Vol 1468 ◽  
pp. 012154
Author(s):  
Odysse Halim ◽  
C Vigorito ◽  
C Casentini ◽  
G Pagliaroli ◽  
M Drago ◽  
...  

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
A. Coleiro ◽  
M. Colomer Molla ◽  
D. Dornic ◽  
M. Lincetto ◽  
V. Kulikovskiy

AbstractThe multi-messenger observation of the next galactic core-collapse supernova will shed light on the different physical processes involved in these energetic explosions. Good timing and pointing capabilities of neutrino detectors would help in the search for an electromagnetic or gravitational-wave counterparts. An approach for the determination of the arrival time delay of the neutrino signal at different experiments using a direct detected neutrino light-curve matching is discussed. A simplified supernova model and detector simulation are used for its application. The arrival time delay and its uncertainty between two neutrino detectors are estimated with chi-square and cross-correlation methods. The direct comparison of the detected light-curves offers the advantage to be model-independent. Millisecond time resolution on the arrival time delay at two different detectors is needed. Using the computed time delay between different combinations of currently operational and future detectors, a triangulation method is used to infer the supernova localisation in the sky. The combination of IceCube, Hyper-Kamiokande, JUNO and KM3NeT/ARCA provides a 90% confidence area of $$140\pm 20\,\hbox {deg}^2$$ 140 ± 20 deg 2 . These low-latency analysis methods can be implemented in the SNEWS alert system.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


Author(s):  
Annie Lang ◽  
Nancy Schwartz ◽  
Sharon Mayell

The study reported here compared how younger and older adults processed the same set of media messages which were selected to vary on two factors, arousing content and valence. Results showed that older and younger adults had similar arousal responses but different patterns of attention and memory. Older adults paid more attention to all messages than did younger adults. However, this attention did not translate into greater memory. Older and younger adults had similar levels of memory for slow-paced messages, but younger adults outperformed older adults significantly as pacing increased, and the difference was larger for arousing compared with calm messages. The differences found are in line with predictions made based on the cognitive-aging literature.


Sign in / Sign up

Export Citation Format

Share Document