scholarly journals Measurement of D$^\pm$ meson production in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 200 GeV with the STAR experiment

2021 ◽  
Author(s):  
Jan Vanek ◽  
Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 46
Author(s):  
Oliver Matonoha

In ultra-relativistic heavy-ion collisions, creation of a novel state of matter, the quark-gluon plasma (QGP), has been observed. Suppressed production of quarkonia, caused by the colour screening of the binding force, has been proposed as a direct evidence of the QGP formation. At RHIC energies, other phenomena such as the regeneration and co-mover absorption, are expected to have a small effect for the bottomonium family, which makes Υ a cleaner probe of the screening effect compared to the J / ψ meson. In these proceedings, the latest measurements of the Υ production suppression in Au + Au collisions at s NN = 200 GeV via the di-muon and di-electron decay channels by the STAR experiment at RHIC are presented and compared with data from the LHC and theoretical calculations. Moreover, Υ production measurements in p + p and p + Au collisions are also reported, providing a baseline and a quantification of the cold nuclear matter effects, respectively.


2017 ◽  
Vol 929 ◽  
pp. 012061
Author(s):  
A. Berdnikov ◽  
Ya. Berdnikov ◽  
D. Kotov ◽  
P. Radzevich ◽  
V. Riabov ◽  
...  

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2476-2483 ◽  
Author(s):  
◽  
MING SHAO ◽  
LIANG LI

Time-Of-Flight (TOF) based on Multi-gap Resistive Plate Chamber (MRPC) detectors have been successfully operating at the STAR experiment since 2003.2,3 The MRPC time resolution is however found to be significantly worse2 (80-90 ps) than that previously obtained in beam test (60 ps).4 In order to fully understand MRPC working principles and operating requirements, an extensive calibration study is performed using data collected by STAR in 200 GeV Au + Au collisions in 2004. The relation between MRPC timing, signal amplitude, incident angle and momentum are discussed. Contributions from tracking properties of STAR-TPC are also studied by simulation. The intrinsic time resolution of the MRPCs used in STAR-TOF, after taking all factors into consideration, is found to be in good agreement with beam test results.


Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Yifei Zhang ◽  
Haojie Xu ◽  
Wangmei Zha ◽  
Qun Wang

AbstractWe reproduce di-electron spectra in the region of 0 < m e+e < 4 GeV in both minimum bias and central Au+Au collisions at $\sqrt {s_{NN} } $ = 200 GeV measured by the STAR experiment. A cocktail simulation, incorporating STAR acceptance and detector responses, is able to describe the “enhancement” of the low mass region by including an in-medium modification of vector mesons and a thermal di-lepton calculation. We also predict the di-lepton mass spectra in RHIC lower energies via an extrapolation method. The evolution of Di-lepton mass spectra, effective temperature, and possible medium modifications versus colliding energies are studied to explore the QCD phase diagram.


2022 ◽  
Vol 258 ◽  
pp. 05010
Author(s):  
Mariia Mitrankova ◽  
Alexander Berdnikov ◽  
Yaroslav Berdnikov ◽  
Dmitry Kotov ◽  
Iurii Mitrankov

The measurements of light hadron production in small collision systems (such as p+Al, p+Au, d+Au, 3He+Au) may allow to explore the quarkgluon plasma formation and to determine the main hadronization mechanism in the considered collisions. Such research has become particularly crucial with the observation of the light hadrons collective behavior in p/d/3He+Au collisions at √SNN = 200 GeV and in p+Al collisions at the same energy at forward and backward rapidities. Among the large variety of light hadrons, ϕ meson is of particular interest since its production is sensitive to the presence of the quark-gluon plasma. The paper presents the comparison of the obtained experimental results on ϕ meson production to different light hadron production in p+Al and 3He+Au at √SNN = 200 GeV at midrapidity. The comparisons of ϕ meson production in p+Al, p+Au, d+Au, and 3He+Au collisions at √SNN = 200 GeV at midrapidity to theoretical models predictions (PYTHIA model and default and string melting versions of the AMPT model) are also provided. The results suggest that the QGP can be formed in p/d/3He+Au collisions, but the volume and lifetime of the produced medium might be insufficient for observation of strangeness enhancement effect. Conceivably, the main hadronization mechanism of ϕ meson production in p+Al collisions is fragmentation, while in p/d/3He+Au collisions this process occurs via coalescence.


Sign in / Sign up

Export Citation Format

Share Document