scholarly journals Energy spectrum of cosmic rays measured using the Pierre Auger Observatory

2021 ◽  
Author(s):  
Vladimír Novotný ◽  
Pedro Abreu ◽  
Marco Aglietta ◽  
Justin M. Albury ◽  
Ingomar Allekotte ◽  
...  
2012 ◽  
Vol 18 ◽  
pp. 221-229
Author(s):  
◽  
J. R. T. DE MELLO NETO

We present the status and the recent measurements from the Pierre Auger Observatory. The energy spectrum is described and its features discussed. We report searches for anisotropy of cosmic rays arrival directions in large scales and through correlation with catalogues of celestial objects. The measurement of the cross section proton-air is discussed. Finally, the mass composition is addressed with the measurements of the variation of the depth of shower maximum with energy and with the muon density at ground.


2009 ◽  
Vol 5 (H15) ◽  
pp. 251-253
Author(s):  
Vitor de Souza ◽  
Peter L. s Biermman

AbstractIn this paper we briefly discuss the present status of the cosmic ray astrophysics under the light of the new data from the Pierre Auger Observatory. The measured energy spectrum is used to test the scenario of production in nearby radio galaxies. Within this framework the AGN correlation would require that most of the cosmic rays are heavy nuclei and are widely scattered by intergalactic magnetic fields.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 128 ◽  
Author(s):  
Dariusz Góra ◽  

The Pierre Auger Observatory is the world’s largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs), with energies above 10 17 eV. The detector allows detailed measurements of the energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above 10 17 eV. The data collected at the Auger Observatory over the last decade show the suppression of the cosmic ray flux at energies above 4 × 10 19 eV. However, it is still unclear if this suppression is caused by the energy limitation of their sources or by the Greisen–Zatsepin–Kuzmin (GZK) cut-off. In such a case, UHECRs would interact with the microwave background (CMB), so that particles traveling long intergalactic distances could not have energies greater than 5 × 10 19 eV. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation that indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavors and photons, and recent neutrino and photon limits provided by the Auger Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy, non-standard-model particles. In this paper, the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, as well as future prospects are presented.


2019 ◽  
Vol 208 ◽  
pp. 08001 ◽  
Author(s):  
Sergio Petrera

In this paper some recent results from the Pierre Auger Collaboration are presented. These are the measurement of the energy spectrum of cosmic rays over a wide range of energies (1017.5 to above 1020 eV), studies of the cosmic-ray mass composition with the fluorescence and surface detector of the Observatory, the observation of a large-scale anisotropy in the arrival direction of cosmic rays above 8 × 1018 eV and indications of anisotropy at intermediate angular scales above 4 × 1019 eV. The astrophysical implications of the spectrum and composition results are also discussed. Finally the progress of the upgrade of the Observatory, AugerPrime is presented.


2010 ◽  
Vol 685 (4-5) ◽  
pp. 239-246 ◽  
Author(s):  
J. Abraham ◽  
P. Abreu ◽  
M. Aglietta ◽  
E.J. Ahn ◽  
D. Allard ◽  
...  

2011 ◽  
Vol 20 (supp01) ◽  
pp. 118-131
Author(s):  
◽  
CAROLA DOBRIGKEIT

The Pierre Auger Observatory in Argentina is the largest cosmic ray detector array ever built. Its main goal is to measure cosmic rays of energy above 1018 eV with unprecedented statistics and precision. Although the construction of its baseline design was completed in mid-2008, the Observatory has been taking data continuously since January 2004. The main results obtained with the Pierre Auger Observatory are presented, with emphasis on the energy spectrum and studies of composition and arrival directions of the ultrahigh energy cosmic rays. Features observed in the energy spectrum are discussed. Results about cosmic ray composition inferred from systematic studies of the average depth of shower maximum and its fluctuations are reviewed. Recent results of studies of arrival direction distributions and correlations with nearby extragalactic objects are presented.


Sign in / Sign up

Export Citation Format

Share Document