scholarly journals A Numerical Study of the effects of a Corotating Interaction Region on cosmic proton and helium transport

2021 ◽  
Author(s):  
Xi Luo ◽  
Xueshang Feng ◽  
Fang Shen ◽  
Ming Zhang ◽  
Marius Potgieter
2009 ◽  
Vol 36 (1) ◽  
Author(s):  
E. Dubinin ◽  
M. Fraenz ◽  
J. Woch ◽  
F. Duru ◽  
D. Gurnett ◽  
...  

2009 ◽  
Vol 114 (A12) ◽  
pp. n/a-n/a ◽  
Author(s):  
D. Pokhotelov ◽  
C. N. Mitchell ◽  
P. T. Jayachandran ◽  
J. W. MacDougall ◽  
M. H. Denton

2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Claudia M. N. Candido ◽  
Inez S. Batista ◽  
Virginia Klausner ◽  
Patricia M. de Siqueira Negreti ◽  
Fabio Becker-Guedes ◽  
...  

1997 ◽  
Vol 490 (1) ◽  
pp. L115-L118 ◽  
Author(s):  
J. R. Dwyer ◽  
G. M. Mason ◽  
J. E. Mazur ◽  
J. R. Jokipii ◽  
T. T. von Rosenvinge ◽  
...  

2019 ◽  
Vol 880 (1) ◽  
pp. L3 ◽  
Author(s):  
Smitha V. Thampi ◽  
C. Krishnaprasad ◽  
P. R. Shreedevi ◽  
Tarun Kumar Pant ◽  
Anil Bhardwaj

2019 ◽  
Vol 622 ◽  
pp. A28 ◽  
Author(s):  
N. Wijsen ◽  
A. Aran ◽  
J. Pomoell ◽  
S. Poedts

Aims. We introduce a new solar energetic particle (SEP) transport code that aims at studying the effects of different background solar wind configurations on SEP events. In this work, we focus on the influence of varying solar wind velocities on the adiabatic energy changes of SEPs and study how a non-Parker background solar wind can trap particles temporarily at small heliocentric radial distances (≲1.5 AU) thereby influencing the cross-field diffusion of SEPs in the interplanetary space. Methods. Our particle transport code computes particle distributions in the heliosphere by solving the focused transport equation (FTE) in a stochastic manner. Particles are propagated in a solar wind generated by the newly developed data-driven heliospheric model, EUHFORIA. In this work, we solve the FTE, including all solar wind effects, cross-field diffusion, and magnetic-field gradient and curvature drifts. As initial conditions, we assume a delta injection of 4 MeV protons, spread uniformly over a selected region at the inner boundary of the model. To verify the model, we first propagate particles in nominal undisturbed fast and slow solar winds. Thereafter, we simulate and analyse the propagation of particles in a solar wind containing a corotating interaction region (CIR). We study the particle intensities and anisotropies measured by a fleet of virtual observers located at different positions in the heliosphere, as well as the global distribution of particles in interplanetary space. Results. The differential intensity-time profiles obtained in the simulations using the nominal Parker solar wind solutions illustrate the considerable adiabatic deceleration undergone by SEPs, especially when propagating in a fast solar wind. In the case of the solar wind containing a CIR, we observe that particles adiabatically accelerate when propagating in the compression waves bounding the CIR at small radial distances. In addition, for r ≳ 1.5 AU, there are particles accelerated by the reverse shock as indicated by, for example, the anisotropies and pitch-angle distributions of the particles. Moreover, a decrease in high-energy particles at the stream interface (SI) inside the CIR is observed. The compression/shock waves and the magnetic configuration near the SI may also act as a magnetic mirror, producing long-lasting high intensities at small radial distances. We also illustrate how the efficiency of the cross-field diffusion in spreading particles in the heliosphere is enhanced due to compressed magnetic fields. Finally, the inclusion of cross-field diffusion enables some particles to cross both the forward compression wave at small radial distances and the forward shock at larger radial distances. This results in the formation of an accelerated particle population centred on the forward shock, despite the lack of magnetic connection between the particle injection region and this shock wave. Particles injected in the fast solar wind stream cannot reach the forward shock since the SI acts as a diffusion barrier.


2000 ◽  
Vol 415 ◽  
pp. 65-87 ◽  
Author(s):  
A. JAVAM ◽  
J. IMBERGER ◽  
S. W. ARMFIELD

A finite volume method is used to study the generation, propagation and interaction of internal waves in a linearly stratified fluid. The internal waves were generated using single and multiple momentum sources. The full unsteady equations of motion were solved using a SIMPLE scheme on a non-staggered grid. An open boundary, based on the Sommerfield radiation condition, allowed waves to propagate through the computational boundaries with minimum reflection and distortion. For the case of a single momentum source, the effects of viscosity and nonlinearity on the generation and propagation of internal waves were investigated.Internal wave–wave interactions between two wave rays were studied using two momentum sources. The rays generated travelled out from the sources and intersected in interaction regions where nonlinear interactions caused the waves to break. When two rays had identical properties but opposite horizontal phase velocities (symmetric interaction), the interactions were not described by a triad interaction mechanism. Instead, energy was transferred to smaller wavelengths and, a few periods later, to standing evanescent modes in multiples of the primary frequency (greater than the ambient buoyancy frequencies) in the interaction region. The accumulation of the energy caused by these trapped modes within the interaction region resulted in the overturning of the density field. When the two rays had different properties (apart from the multiples of the forcing frequencies) the divisions of the forcing frequencies as well as the combination of the different frequencies were observed within the interaction region.The model was validated by comparing the results with those from experimental studies. Further, the energy balance was conserved and the dissipation of energy was shown to be related to the degree of nonlinear interaction.


Sign in / Sign up

Export Citation Format

Share Document