scholarly journals Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA

2019 ◽  
Vol 622 ◽  
pp. A28 ◽  
Author(s):  
N. Wijsen ◽  
A. Aran ◽  
J. Pomoell ◽  
S. Poedts

Aims. We introduce a new solar energetic particle (SEP) transport code that aims at studying the effects of different background solar wind configurations on SEP events. In this work, we focus on the influence of varying solar wind velocities on the adiabatic energy changes of SEPs and study how a non-Parker background solar wind can trap particles temporarily at small heliocentric radial distances (≲1.5 AU) thereby influencing the cross-field diffusion of SEPs in the interplanetary space. Methods. Our particle transport code computes particle distributions in the heliosphere by solving the focused transport equation (FTE) in a stochastic manner. Particles are propagated in a solar wind generated by the newly developed data-driven heliospheric model, EUHFORIA. In this work, we solve the FTE, including all solar wind effects, cross-field diffusion, and magnetic-field gradient and curvature drifts. As initial conditions, we assume a delta injection of 4 MeV protons, spread uniformly over a selected region at the inner boundary of the model. To verify the model, we first propagate particles in nominal undisturbed fast and slow solar winds. Thereafter, we simulate and analyse the propagation of particles in a solar wind containing a corotating interaction region (CIR). We study the particle intensities and anisotropies measured by a fleet of virtual observers located at different positions in the heliosphere, as well as the global distribution of particles in interplanetary space. Results. The differential intensity-time profiles obtained in the simulations using the nominal Parker solar wind solutions illustrate the considerable adiabatic deceleration undergone by SEPs, especially when propagating in a fast solar wind. In the case of the solar wind containing a CIR, we observe that particles adiabatically accelerate when propagating in the compression waves bounding the CIR at small radial distances. In addition, for r ≳ 1.5 AU, there are particles accelerated by the reverse shock as indicated by, for example, the anisotropies and pitch-angle distributions of the particles. Moreover, a decrease in high-energy particles at the stream interface (SI) inside the CIR is observed. The compression/shock waves and the magnetic configuration near the SI may also act as a magnetic mirror, producing long-lasting high intensities at small radial distances. We also illustrate how the efficiency of the cross-field diffusion in spreading particles in the heliosphere is enhanced due to compressed magnetic fields. Finally, the inclusion of cross-field diffusion enables some particles to cross both the forward compression wave at small radial distances and the forward shock at larger radial distances. This results in the formation of an accelerated particle population centred on the forward shock, despite the lack of magnetic connection between the particle injection region and this shock wave. Particles injected in the fast solar wind stream cannot reach the forward shock since the SI acts as a diffusion barrier.

2020 ◽  
Author(s):  
Fang Shen ◽  
Yousheng Liu ◽  
Yi Yang

<p>Previous research has shown that the deflection of coronal mass ejections (CMEs) in interplanetary space, especially fast CMEs, is a common phenomenon. The deflection caused by the interaction with background solar wind is an important factor to determine whether CMEs could hit Earth or not. As the Sun rotates, there will be interactions between solar wind flows with different speeds. When faster solar wind runs into slower solar wind<br>ahead, it will form a compressive area corotating with the Sun, which is called a corotating interaction region (CIR). These compression regions always have a higher density than the common background solar wind. When interacting with CME, will this make a difference in the deflection process of CME? In this research, first, a three-dimensional (3D) flux-rope CME initialization model is established based on the graduated cylindrical shell (GCS)<br>model. Then this CME model is introduced into the background solar wind, which is obtained using a 3D IN (INterplanetary) -TVD-MHD model. The Carrington Rotation (CR) 2154 is selected as an example to simulate the propagation and deflection of fast CME when it interacts with background solar wind, especially with the CIR structure.</p><p>The simulation results show that: (1) the fast CME will deflect eastward when it propagates into the background solar wind without the CIR; (2) when the fast CME hits the CIR on its west side, it will also deflect eastward, and the deflection angle will increase compared with the situation without CIR.</p>


Author(s):  
Steve Miller

Planetary aurorae are some of the most iconic and brilliant (in all senses of the word) indicators that not only are we all interconnected on our own planet Earth, but that we are connected throughout the entire solar system as well. They are testimony to the centrality of the Sun, not just in providing the essential sunlight that drives weather systems and makes habitability possible, but in generating a high-velocity wind of electrically charged particles—known as the solar wind—that buffets each of the planets in turn as it streams outward through interplanetary space. In some cases, those solar-wind particles actually cause the aurorae; in others, their pressure prompts and modifies what is already happening within the planetary system as a whole. Aurorae are created when electrically charged particles—predominantly negatively charged electrons or positive ions such as protons, the nuclei of hydrogen—crash into the atoms and molecules of a “planetary” atmosphere. They are guided and accelerated to high energies by magnetic field lines that tend to concentrate them toward the (magnetic) poles. Possessing energies usually measured in hundreds and thousands, all the way up to many millions, of electron Volts (eV), these energetic particles excite the atoms and molecules that constitute the atmosphere. At these energies, such particles can excite the electrons in atoms and molecules from their ground state to higher levels. The atoms and molecules that have been excited by these high-energy collisions can then relax, emitting light immediately after the collision, or after they have been “thermalized” by the surrounding atmosphere. Either way, the emitted radiation is at certain well-defined wavelengths, giving characteristic colors to the aurorae. Just how many particles, how much atmosphere, and what strength of magnetic field are required to create aurorae is an open question. Earth has a moderately sized magnetic field, with a magnetic moment measured at 7.91x1015 Tesla m3 (T m3). It has a moderate atmosphere, too, giving a standard sea-level pressure of 101,325 Pascal (Pa), or 1.01325 bar. The density of the solar wind at Earth is about 6 million per cubic meter (6x106 m-3). Earth has very bright aurorae. Mercury has a magnetic moment 0.7% of that of Earth and no atmosphere to speak of, and consequently no aurorae. But aurorae have been reported on both Venus and Mars, even though they both have surface magnetic fields much less than Mercury: they both have atmospheres, albeit Mars is very rarefied. The giant planets—Jupiter, Saturn, Uranus, and Neptune—have magnetic moments tens, hundreds, and (in the case of Jupiter) thousands of times that of Earth. They all have thick atmospheres, and all of them have aurorae (although Neptune’s has not been seen since the days of the Voyager spacecraft). The aurorae of the solar system are very varied, variable, and exciting.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1419
Author(s):  
Giuseppe Consolini ◽  
Tommaso Alberti ◽  
Vincenzo Carbone

In the past decades, there has been an increasing literature on the presence of an inertial energy cascade in interplanetary space plasma, being interpreted as the signature of Magnetohydrodynamic turbulence (MHD) for both fields and passive scalars. Here, we investigate the passive scalar nature of the solar wind proton density and temperature by looking for scaling features in the mixed-scalar third-order structure functions using measurements on-board the Ulysses spacecraft during two different periods, i.e., an equatorial slow solar wind and a high-latitude fast solar wind, respectively. We find a linear scaling of the mixed third-order structure function as predicted by Yaglom’s law for passive scalars in the case of slow solar wind, while the results for fast solar wind suggest that the mixed fourth-order structure function displays a linear scaling. A simple empirical explanation of the observed difference is proposed and discussed.


2009 ◽  
Vol 27 (8) ◽  
pp. 3165-3178 ◽  
Author(s):  
R. L. McPherron ◽  
L. Kepko ◽  
T. I. Pulkkinen ◽  
T. S. Hsu ◽  
J. W. Weygand ◽  
...  

Abstract. We use observations in the solar wind and on the ground to study the interaction of the solar wind and interplanetary magnetic field with Earth's magnetosphere. We find that the type of response depends on the state of the solar wind. Coupling functions change as the properties of the solar wind change. We examine this behavior quantitatively with time dependent linear prediction filters. These filters are determined from ensemble arrays of representative events organized by some characteristic time in the event time series. In our study we have chosen the stream interface at the center of a corotating interaction region as the reference time. To carry out our analysis we have identified 394 stream interfaces in the years 1995–2007. For each interface we have selected ten-day intervals centered on the interface and placed data for the interval in rows of an ensemble array. In this study we use Es the rectified dawn-dusk electric field in gsm coordinates as input and the AL index as output. A selection window of width one day is stepped across the ensemble and for each of the nine available windows all events in a given year (~30) are used to calculate a system impulse response function. A change in the properties of the system as a consequence of changes in the solar wind relative to the reference time will appear as a change in the shape and/or the area of the response function. The analysis shows that typically only 45% of the AL variance is predictable in this manner when filters are constructed from a full year of data. We find that the weakest coupling occurs around the stream interface and the strongest well away from the interface. The interface is the time of peak dynamic pressure and strength of the electric field. We also find that coupling appears to be stronger during recurrent high-speed streams in the declining phase of the solar cycle than it is around solar maximum. These results are consistent with the previous report that both strong driving (Es) and high dynamic pressure (Pdyn) reduce the coupling efficiency. Although the changes appear to be statistically significant their physical cause cannot be uniquely identified because various properties of the solar wind vary systematically through a corotating interaction region. It is also possible that the quality of the propagated solar wind data depends on the state of the solar wind. Finally it is likely that the quality of the AL index during the last solar cycle may affect the results. Despite these limitations our results indicate that the Es-AL coupling function is 50% stronger outside a corotating interaction region than inside.


Author(s):  
L. Adhikari ◽  
G.P. Zank ◽  
L.-L. Zhao ◽  
M. Nakanotani ◽  
S. Tasnim

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Sign in / Sign up

Export Citation Format

Share Document