corotating interaction region
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xi Luo ◽  
Xueshang Feng ◽  
Fang Shen ◽  
Ming Zhang ◽  
Marius Potgieter

2020 ◽  
Author(s):  
Fang Shen ◽  
Yousheng Liu ◽  
Yi Yang

<p>Previous research has shown that the deflection of coronal mass ejections (CMEs) in interplanetary space, especially fast CMEs, is a common phenomenon. The deflection caused by the interaction with background solar wind is an important factor to determine whether CMEs could hit Earth or not. As the Sun rotates, there will be interactions between solar wind flows with different speeds. When faster solar wind runs into slower solar wind<br>ahead, it will form a compressive area corotating with the Sun, which is called a corotating interaction region (CIR). These compression regions always have a higher density than the common background solar wind. When interacting with CME, will this make a difference in the deflection process of CME? In this research, first, a three-dimensional (3D) flux-rope CME initialization model is established based on the graduated cylindrical shell (GCS)<br>model. Then this CME model is introduced into the background solar wind, which is obtained using a 3D IN (INterplanetary) -TVD-MHD model. The Carrington Rotation (CR) 2154 is selected as an example to simulate the propagation and deflection of fast CME when it interacts with background solar wind, especially with the CIR structure.</p><p>The simulation results show that: (1) the fast CME will deflect eastward when it propagates into the background solar wind without the CIR; (2) when the fast CME hits the CIR on its west side, it will also deflect eastward, and the deflection angle will increase compared with the situation without CIR.</p>


2020 ◽  
Vol 635 ◽  
pp. A49
Author(s):  
Yong C.-M. Liu ◽  
Zhaohui Qi ◽  
Jia Huang ◽  
Chi Wang ◽  
Hui Fu ◽  
...  

We report on two small solar wind transients embedded in the corotating interaction region, characterized by surprisingly lower proton density compared with their surrounding regions. In addition to lower density, these two small solar wind transients showed other interesting features like higher proton temperature, higher alpha-proton ratios, and lower charge states (C+6/C+5 and O+7/O+6). A synthesized picture for event One combining the observations by STEREO B, ACE, and Wind showed that this small solar transient has an independent magnetic field. Back-mapping links the origin of the small solar transient to a small coronal hole on the surface of the Sun. Considering these special features and the back-mapping, we conclude that such small solar wind transients may have originated from a small coronal hole at low latitudes.


2019 ◽  
Vol 880 (1) ◽  
pp. L3 ◽  
Author(s):  
Smitha V. Thampi ◽  
C. Krishnaprasad ◽  
P. R. Shreedevi ◽  
Tarun Kumar Pant ◽  
Anil Bhardwaj

2019 ◽  
Vol 622 ◽  
pp. A28 ◽  
Author(s):  
N. Wijsen ◽  
A. Aran ◽  
J. Pomoell ◽  
S. Poedts

Aims. We introduce a new solar energetic particle (SEP) transport code that aims at studying the effects of different background solar wind configurations on SEP events. In this work, we focus on the influence of varying solar wind velocities on the adiabatic energy changes of SEPs and study how a non-Parker background solar wind can trap particles temporarily at small heliocentric radial distances (≲1.5 AU) thereby influencing the cross-field diffusion of SEPs in the interplanetary space. Methods. Our particle transport code computes particle distributions in the heliosphere by solving the focused transport equation (FTE) in a stochastic manner. Particles are propagated in a solar wind generated by the newly developed data-driven heliospheric model, EUHFORIA. In this work, we solve the FTE, including all solar wind effects, cross-field diffusion, and magnetic-field gradient and curvature drifts. As initial conditions, we assume a delta injection of 4 MeV protons, spread uniformly over a selected region at the inner boundary of the model. To verify the model, we first propagate particles in nominal undisturbed fast and slow solar winds. Thereafter, we simulate and analyse the propagation of particles in a solar wind containing a corotating interaction region (CIR). We study the particle intensities and anisotropies measured by a fleet of virtual observers located at different positions in the heliosphere, as well as the global distribution of particles in interplanetary space. Results. The differential intensity-time profiles obtained in the simulations using the nominal Parker solar wind solutions illustrate the considerable adiabatic deceleration undergone by SEPs, especially when propagating in a fast solar wind. In the case of the solar wind containing a CIR, we observe that particles adiabatically accelerate when propagating in the compression waves bounding the CIR at small radial distances. In addition, for r ≳ 1.5 AU, there are particles accelerated by the reverse shock as indicated by, for example, the anisotropies and pitch-angle distributions of the particles. Moreover, a decrease in high-energy particles at the stream interface (SI) inside the CIR is observed. The compression/shock waves and the magnetic configuration near the SI may also act as a magnetic mirror, producing long-lasting high intensities at small radial distances. We also illustrate how the efficiency of the cross-field diffusion in spreading particles in the heliosphere is enhanced due to compressed magnetic fields. Finally, the inclusion of cross-field diffusion enables some particles to cross both the forward compression wave at small radial distances and the forward shock at larger radial distances. This results in the formation of an accelerated particle population centred on the forward shock, despite the lack of magnetic connection between the particle injection region and this shock wave. Particles injected in the fast solar wind stream cannot reach the forward shock since the SI acts as a diffusion barrier.


2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Claudia M. N. Candido ◽  
Inez S. Batista ◽  
Virginia Klausner ◽  
Patricia M. de Siqueira Negreti ◽  
Fabio Becker-Guedes ◽  
...  

2017 ◽  
Vol 122 (3) ◽  
pp. 2900-2921 ◽  
Author(s):  
Linn‐Kristine Glesnes Ødegaard ◽  
Hilde Nesse Tyssøy ◽  
Finn Søraas ◽  
Johan Stadsnes ◽  
Marit Irene Sandanger

Sign in / Sign up

Export Citation Format

Share Document