scholarly journals Ionospheric response to the corotating interaction region-driven geomagnetic storm of October 2002

2009 ◽  
Vol 114 (A12) ◽  
pp. n/a-n/a ◽  
Author(s):  
D. Pokhotelov ◽  
C. N. Mitchell ◽  
P. T. Jayachandran ◽  
J. W. MacDougall ◽  
M. H. Denton
2009 ◽  
Vol 36 (1) ◽  
Author(s):  
E. Dubinin ◽  
M. Fraenz ◽  
J. Woch ◽  
F. Duru ◽  
D. Gurnett ◽  
...  

2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Claudia M. N. Candido ◽  
Inez S. Batista ◽  
Virginia Klausner ◽  
Patricia M. de Siqueira Negreti ◽  
Fabio Becker-Guedes ◽  
...  

1992 ◽  
Vol 70 (7) ◽  
pp. 569-574 ◽  
Author(s):  
M. Förster ◽  
N. Jakowski ◽  
A. Best ◽  
J. Smilauer

Langmuir probe data obtained during the storm period March 20–23, 1990, on board the MAGION-2 subsatellite of the ACTIVNY experiment are analyzed to study the plasmaspheric and ionospheric response to a magnetic storm. The data indicate a well-pronounced equatorward edge of the electron density trough in the afternoon (18:15 LT) at about 800 km height that moves towards lower latitudes during the course of the storm. It is interesting to note that the electron density inside the plasmasphere is increased by more than 20% in the morning shortly after sunrise (07:30 LT). This is due to enhanced O+ densities in the lower plasmasphere during the growth phase of the geomagnetic storm as measured by the ion mass spectrometer NAM-5 onboard the main satellite. It is suggested that the source for the increased density is thermospheric Joule heating at auroral latitudes with a commensurate increase in thermospheric pressure. This increased pressure causes the local thermosphere to expand both upward and equatorward. The increased atomic-oxygen scale height coupled with equatorward motion of fhermospheric perturbations results in an increased O density and resulting O+ density within the lower plasmasphere. The observations indicate a storm-induced compression of the plasmasphere that favourizes an enhanced outflow of plasma into the ionosphere leading to an increased nighttime F2-layer ionization and a depletion of the plasmasphere during the following hours.


2020 ◽  
Vol 365 (12) ◽  
Author(s):  
A. Vishnu Vardhan ◽  
P. Babu Sree Harsha ◽  
D. Venkata Ratnam ◽  
A. K. Upadhayaya

1997 ◽  
Vol 490 (1) ◽  
pp. L115-L118 ◽  
Author(s):  
J. R. Dwyer ◽  
G. M. Mason ◽  
J. E. Mazur ◽  
J. R. Jokipii ◽  
T. T. von Rosenvinge ◽  
...  

2019 ◽  
Vol 880 (1) ◽  
pp. L3 ◽  
Author(s):  
Smitha V. Thampi ◽  
C. Krishnaprasad ◽  
P. R. Shreedevi ◽  
Tarun Kumar Pant ◽  
Anil Bhardwaj

2019 ◽  
Vol 622 ◽  
pp. A28 ◽  
Author(s):  
N. Wijsen ◽  
A. Aran ◽  
J. Pomoell ◽  
S. Poedts

Aims. We introduce a new solar energetic particle (SEP) transport code that aims at studying the effects of different background solar wind configurations on SEP events. In this work, we focus on the influence of varying solar wind velocities on the adiabatic energy changes of SEPs and study how a non-Parker background solar wind can trap particles temporarily at small heliocentric radial distances (≲1.5 AU) thereby influencing the cross-field diffusion of SEPs in the interplanetary space. Methods. Our particle transport code computes particle distributions in the heliosphere by solving the focused transport equation (FTE) in a stochastic manner. Particles are propagated in a solar wind generated by the newly developed data-driven heliospheric model, EUHFORIA. In this work, we solve the FTE, including all solar wind effects, cross-field diffusion, and magnetic-field gradient and curvature drifts. As initial conditions, we assume a delta injection of 4 MeV protons, spread uniformly over a selected region at the inner boundary of the model. To verify the model, we first propagate particles in nominal undisturbed fast and slow solar winds. Thereafter, we simulate and analyse the propagation of particles in a solar wind containing a corotating interaction region (CIR). We study the particle intensities and anisotropies measured by a fleet of virtual observers located at different positions in the heliosphere, as well as the global distribution of particles in interplanetary space. Results. The differential intensity-time profiles obtained in the simulations using the nominal Parker solar wind solutions illustrate the considerable adiabatic deceleration undergone by SEPs, especially when propagating in a fast solar wind. In the case of the solar wind containing a CIR, we observe that particles adiabatically accelerate when propagating in the compression waves bounding the CIR at small radial distances. In addition, for r ≳ 1.5 AU, there are particles accelerated by the reverse shock as indicated by, for example, the anisotropies and pitch-angle distributions of the particles. Moreover, a decrease in high-energy particles at the stream interface (SI) inside the CIR is observed. The compression/shock waves and the magnetic configuration near the SI may also act as a magnetic mirror, producing long-lasting high intensities at small radial distances. We also illustrate how the efficiency of the cross-field diffusion in spreading particles in the heliosphere is enhanced due to compressed magnetic fields. Finally, the inclusion of cross-field diffusion enables some particles to cross both the forward compression wave at small radial distances and the forward shock at larger radial distances. This results in the formation of an accelerated particle population centred on the forward shock, despite the lack of magnetic connection between the particle injection region and this shock wave. Particles injected in the fast solar wind stream cannot reach the forward shock since the SI acts as a diffusion barrier.


Sign in / Sign up

Export Citation Format

Share Document