scholarly journals Transforming graph states to Bell-pairs is NP-Complete

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 348
Author(s):  
Axel Dahlberg ◽  
Jonas Helsen ◽  
Stephanie Wehner

Critical to the construction of large scale quantum networks, i.e. a quantum internet, is the development of fast algorithms for managing entanglement present in the network. One fundamental building block for a quantum internet is the distribution of Bell pairs between distant nodes in the network. Here we focus on the problem of transforming multipartite entangled states into the tensor product of bipartite Bell pairs between specific nodes using only a certain class of local operations and classical communication. In particular we study the problem of deciding whether a given graph state, and in general a stabilizer state, can be transformed into a set of Bell pairs on specific vertices using only single-qubit Clifford operations, single-qubit Pauli measurements and classical communication. We prove that this problem is NP-Complete.

Science ◽  
2019 ◽  
Vol 364 (6443) ◽  
pp. 875-878 ◽  
Author(s):  
Yong Wan ◽  
Daniel Kienzler ◽  
Stephen D. Erickson ◽  
Karl H. Mayer ◽  
Ting Rei Tan ◽  
...  

Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap. The entanglement fidelity of our teleported CNOT is in the interval (0.845, 0.872) at the 95% confidence level. The implementation combines ion shuttling with individually addressed single-qubit rotations and detections, same- and mixed-species two-qubit gates, and real-time conditional operations, thereby demonstrating essential tools for scaling trapped-ion quantum computers combined in a single device.


2006 ◽  
Vol 84 (6-7) ◽  
pp. 639-644
Author(s):  
B C Sanders ◽  
G Gour ◽  
D A Meyer

We present a powerful theorem for tripartite remote entanglement distribution protocols, which provides an operational interpretation of concurrence as a type of entanglement capacity, and we establish that concurrence of assistance, which we show is an entanglement monotone, identifies capabilities of and limitations to producing pure bipartite entangled states from pure tripartite entangled states. In addition, we show that, if concurrence of assistance for the pure tripartite state is at least as large as the concurrence of the desired pure bipartite state, then the former may be transformed to the latter via local operations and classical communication, and we calculate the maximum probability for this transformation when this condition is not met.PACS Nos.: 03.67.Mn, 03.67.Hk, 03.65.Ud


Author(s):  
Vladimir Gavrilov ◽  
Tatyana Antipova ◽  
Yan Vlasov ◽  
Sergey Ardatov ◽  
Anastasia Ardatova

In their previous works , leading their history since 1988, the authors of this article have repeatedly conceptually shown and experimentally verified the results of research on the teleportation of information between macro objects. Early author's works were performed during the existence of the Russian Federation – as a country called the Union of Soviet Socialist Republics (USSR). Some of which were marked "Top Secret" - links further down the text. Since they were performed under the supervision of the relevant special services and further "Department of external relations of the Russian Academy of Sciences". The authors used numerous examples to demonstrate the possibility of teleportation of information in macro-systems, including ecosystem, biogeocenotic levels, and then tissue and organism levels. Successful experimental verifications occurred only in cases when all the principles and rules laid down in the theory of quantum information, applied to biological objects, were correctly combined. Namely, the preparation of cascades of entangled States was performed both on the mental and somatic levels. In full accordance with the principle of complementarity and taking into account the fact that the observer and the observed are actively connected by the sum of similarities. In addition, the role of the classical communication channel in this process was performed by carrier electromagnetic fields modulated by a useful signal. This signal represented a cast of the simulated experimental process. An example of a real COVID-19 pandemic is the verification of author's works in nature on a biogeocenotic scale. And certainly with anthropogenic – so to speak-participation.


2020 ◽  
Vol 34 (01) ◽  
pp. 630-637 ◽  
Author(s):  
Ferdinando Fioretto ◽  
Terrence W.K. Mak ◽  
Pascal Van Hentenryck

The Optimal Power Flow (OPF) problem is a fundamental building block for the optimization of electrical power systems. It is nonlinear and nonconvex and computes the generator setpoints for power and voltage, given a set of load demands. It is often solved repeatedly under various conditions, either in real-time or in large-scale studies. This need is further exacerbated by the increasing stochasticity of power systems due to renewable energy sources in front and behind the meter. To address these challenges, this paper presents a deep learning approach to the OPF. The learning model exploits the information available in the similar states of the system (which is commonly available in practical applications), as well as a dual Lagrangian method to satisfy the physical and engineering constraints present in the OPF. The proposed model is evaluated on a large collection of realistic medium-sized power systems. The experimental results show that its predictions are highly accurate with average errors as low as 0.2%. Additionally, the proposed approach is shown to improve the accuracy of the widely adopted linear DC approximation by at least two orders of magnitude.


2010 ◽  
Vol 08 (01n02) ◽  
pp. 325-335 ◽  
Author(s):  
HARALD WUNDERLICH ◽  
MARTIN B. PLENIO

Many experiments in quantum information aim at creating graph states. Quantifying the purity of an experimentally achieved graph state could in principle be accomplished using full-state tomography. This method requires a number of measurement settings growing exponentially with the number of constituents involved. Thus, full-state tomography becomes experimentally infeasible even for a moderate number of qubits. In this paper, we present a method to estimate the purity of experimentally achieved graph states with simple measurements. The observables we consider are the stabilizers of the underlying graph. Then, we formulate the problem as: "What is the state with the least purity that is compatible with the measurement data?" We solve this problem analytically and compare the obtained bounds with results from full-state tomography for simulated data.


Author(s):  
Axel Dahlberg ◽  
Stephanie Wehner

Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool—for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ′ is a vertex-minor of another graph G . The vertex-minor problem is, in general, -Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ′ are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information. This article is part of a discussion meeting issue ‘Foundations of quantum mechanics and their impact on contemporary society’.


2015 ◽  
Vol 15 (13&14) ◽  
pp. 1223-1232
Author(s):  
Chengjun Wu ◽  
Bin Luo ◽  
Hong Guo

When Alice and Bob share two pairs of quantum correlated states, Alice can remotely prepare quantum entanglement and quantum discord in Bob’s side by measuring the parts in her side and telling Bob the measurement results by classical communication. For remote entanglement preparation, entanglement is necessary . We find that for some shared resources having the same amount of entanglement, when Bell measurement is used, the entanglement remotely prepared can be different, and more discord in the resources actually decreases the entanglement prepared. We also find that for some resources with more entanglement, the entanglement remotely prepared may be less. Therefore, we conclude that entanglement is a necessary resource but may not be the only resource responsible for the entanglement remotely prepared, and discord does not likely to assist this process. Also, for the preparation of discord, we find that some states with no entanglement could outperform entangled states.


2016 ◽  
Vol 14 (05) ◽  
pp. 1650026
Author(s):  
Xiao-Ning Qi ◽  
Yong Zhang

Nitrogen-vacancy (NV) centers implanted beneath the diamond surface have been demonstrated to be effective in the processing of controlling and reading-out. In this paper, NV center entangled with the fluorine nuclei collective ensemble is simplified to Jaynes–Cummings (JC) model. Based on this system, we discussed the implementation of quantum state storage and single-qubit quantum gate.


Author(s):  
Zuo Dai ◽  
Jianzhong Cha

Abstract Artificial Neural Networks, particularly the Hopfield-Tank network, have been effectively applied to the solution of a variety of tasks formulated as large scale combinatorial optimization problems, such as Travelling Salesman Problem and N Queens Problem [1]. The problem of optimally packing a set of geometries into a space with finite dimensions arises frequently in many applications and is far difficult than general NP-complete problems listed in [2]. Until now within accepted time limit, it can only be solved with heuristic methods for very simple cases (e.g. 2D layout). In this paper we propose a heuristic-based Hopfield neural network designed to solve the rectangular packing problems in two dimensions, which is still NP-complete [3]. By comparing the adequacy and efficiency of the results with that obtained by several other exact and heuristic approaches, it has been concluded that the proposed method has great potential in solving 2D packing problems.


Author(s):  
S. K. Joshi ◽  
Z. Huang ◽  
A Fletcher ◽  
N Solomons ◽  
I. V. Puthoor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document