scholarly journals Faster Coherent Quantum Algorithms for Phase, Energy, and Amplitude Estimation

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 566
Author(s):  
Patrick Rall

We consider performing phase estimation under the following conditions: we are given only one copy of the input state, the input state does not have to be an eigenstate of the unitary, and the state must not be measured. Most quantum estimation algorithms make assumptions that make them unsuitable for this 'coherent' setting, leaving only the textbook approach. We present novel algorithms for phase, energy, and amplitude estimation that are both conceptually and computationally simpler than the textbook method, featuring both a smaller query complexity and ancilla footprint. They do not require a quantum Fourier transform, and they do not require a quantum sorting network to compute the median of several estimates. Instead, they use block-encoding techniques to compute the estimate one bit at a time, performing all amplification via singular value transformation. These improved subroutines accelerate the performance of quantum Metropolis sampling and quantum Bayesian inference.

2015 ◽  
Vol 15 (3&4) ◽  
pp. 316-356
Author(s):  
Nathan Wiebe ◽  
Ashish Kapoor ◽  
Krysta M. Svore

We present quantum algorithms for performing nearest-neighbor learning and $k$--means clustering. At the core of our algorithms are fast and coherent quantum methods for computing the Euclidean distance both directly and via the inner product which we couple with methods for performing amplitude estimation that do not require measurement. We prove upper bounds on the number of queries to the input data required to compute such distances and find the nearest vector to a given test example. In the worst case, our quantum algorithms lead to polynomial reductions in query complexity relative to Monte Carlo algorithms. We also study the performance of our quantum nearest-neighbor algorithms on several real-world binary classification tasks and find that the classification accuracy is competitive with classical methods.


2019 ◽  
Vol 1 (2) ◽  
pp. 14-19
Author(s):  
Sui Ping Lee ◽  
Yee Kit Chan ◽  
Tien Sze Lim

Accurate interpretation of interferometric image requires an extremely challenging task based on actual phase reconstruction for incomplete noise observation. In spite of the establishment of comprehensive solutions, until now, a guaranteed means of solution method is yet to exist. The initially observed interferometric image is formed by 2π-periodic phase image that wrapped within (-π, π]. Such inverse problem is further corrupted by noise distortion and leads to the degradation of interferometric image. In order to overcome this, an effective algorithm that enables noise suppression and absolute phase reconstruction of interferometric phase image is proposed. The proposed method incorporates an improved order statistical filter that is able to adjust or vary on its filtering rate by adapting to phase noise level of relevant interferometric image. Performance of proposed method is evaluated and compared with other existing phase estimation algorithms. The comparison is based on a series of computer simulated and real interferometric data images. The experiment results illustrate the effectiveness and competency of the proposed method.


2015 ◽  
Vol 13 (07) ◽  
pp. 1550059 ◽  
Author(s):  
Shruti Dogra ◽  
Arvind Dorai ◽  
Kavita Dorai

The quantum Fourier transform (QFT) is a key ingredient of several quantum algorithms and a qudit-specific implementation of the QFT is hence an important step toward the realization of qudit-based quantum computers. This work develops a circuit decomposition of the QFT for hybrid qudits based on generalized Hadamard and generalized controlled-phase gates, which can be implemented using selective rotations in NMR. We experimentally implement the hybrid qudit QFT on an NMR quantum emulator, which uses four qubits to emulate a single qutrit coupled to two qubits.


2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 361
Author(s):  
Lin Lin ◽  
Yu Tong

We present a quantum eigenstate filtering algorithm based on quantum signal processing (QSP) and minimax polynomials. The algorithm allows us to efficiently prepare a target eigenstate of a given Hamiltonian, if we have access to an initial state with non-trivial overlap with the target eigenstate and have a reasonable lower bound for the spectral gap. We apply this algorithm to the quantum linear system problem (QLSP), and present two algorithms based on quantum adiabatic computing (AQC) and quantum Zeno effect respectively. Both algorithms prepare the final solution as a pure state, and achieves the near optimal O~(dκlog⁡(1/ϵ)) query complexity for a d-sparse matrix, where κ is the condition number, and ϵ is the desired precision. Neither algorithm uses phase estimation or amplitude amplification.


2020 ◽  
Vol 19 (2) ◽  
Author(s):  
Yohichi Suzuki ◽  
Shumpei Uno ◽  
Rudy Raymond ◽  
Tomoki Tanaka ◽  
Tamiya Onodera ◽  
...  

AbstractThis paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists of many controlled amplification operations followed by a quantum Fourier transform. However, the whole procedure is hard to implement with current and near-term quantum computers. In this paper, we propose a quantum amplitude estimation algorithm without the use of expensive controlled operations; the key idea is to utilize the maximum likelihood estimation based on the combined measurement data produced from quantum circuits with different numbers of amplitude amplification operations. Numerical simulations we conducted demonstrate that our algorithm asymptotically achieves nearly the optimal quantum speedup with a reasonable circuit length.


2006 ◽  
Vol 14 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Paul Massey ◽  
John A. Clark ◽  
Susan Stepney

We show how Genetic Programming (GP) can be used to evolve useful quantum computing artefacts of increasing sophistication and usefulness: firstly specific quantum circuits, then quantum programs, and finally system-independent quantum algorithms. We conclude the paper by presenting a human-competitive Quantum Fourier Transform (QFT) algorithm evolved by GP.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350008
Author(s):  
CHEN-FU CHIANG

Due to the great difficulty in scalability, quantum computers are limited in the number of qubits during the early stages of the quantum computing regime. In addition to the required qubits for storing the corresponding eigenvector, suppose we have additional k qubits available. Given such a constraint k, we propose an approach for the phase estimation for an eigenphase of exactly n-bit precision. This approach adopts the standard recursive circuit for quantum Fourier transform (QFT) in [R. Cleve and J. Watrous, Fast parallel circuits for quantum fourier transform, Proc. 41st Annual Symp. on Foundations of Computer Science (2000), pp. 526–536.] and adopts classical bits to implement such a task. Our algorithm has the complexity of O(n log k), instead of O(n2) in the conventional QFT, in terms of the total invocation of rotation gates. We also design a scheme to implement the factorization algorithm by using k available qubits via either the continued fractions approach or the simultaneous Diophantine approximation.


Sign in / Sign up

Export Citation Format

Share Document