scholarly journals MATHEMATICAL MODELING OF DIFFUSION PROCESSES OF MASS TRANSFER OF «FREE CALCIUM HYDROXIDE» DURING CORROSION OF CEMENT CONCRETES

Author(s):  
Sergey V. Fedosov ◽  
Varvara Eu. Roumyantseva ◽  
Viktoriya S. Konovalova ◽  
Svetlana A. Loginova

The paper presents a mathematical model of mass transfer in the processes of corrosion of the first type of cement concrete at the level of phenomenological equations for a closed reservoir-liquid system. A step-by-step transition to the recording of the boundary value mass conduction problem in dimensionless coordinates is shown. The solutions of the boundary value mass conduction problem for the region of large and small values of Fourier numbers are obtained.

2021 ◽  
Vol 3 (102) ◽  
pp. 55-67
Author(s):  
VARVARA E. RUMYANTSEVA ◽  
SVETLANA A. LOGINOVA ◽  
NATALIA E. KARTSEVA

In the aquatic environment, biocorrosion is an important factor affecting the reliability and durability of concrete structures. The destruction of cement concretes during biological corrosion is determined by the processes of mass transfer. The article presents the development of a calculated mathematical model of liquid corrosion in cement concrete, taking into account the biogenic factor. For the first time, a model of mass transfer in an unbounded two-layer plate is considered in the form of differential equations of parabolic type in partial derivatives with boundary conditions of the second kind at the interface between concrete and liquid and of the fourth kind at the interface between concrete and biofilm. The results of a numerical experiment are presented to study the influence of the coefficients of mass conductivity and mass transfer on the kinetics and dynamics of the process.


Author(s):  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Edmunds Teirumnieks ◽  
Harijs Kalis

The mathematical model for calculation of concentration of metals for 3 layers peat blocks is developed due to solving the 3-D boundary-value problem in multilayered domain-averaging and finite difference methods are considered. As an example, mathematical models for calculation of Fe and Ca concentrations have been analyzed.


2020 ◽  
Vol 6 (99) ◽  
pp. 22-35
Author(s):  
SVETLANA A. LOGINOVA ◽  
ILYA N. GOGLEV

The article describes the features of various types of cement concrete corrosion: liquid, acid and biological corrosion, which are most often detected at the stage of inspection of concrete and reinforced concrete building struc-tures. The authors consider the possibility of using methods of mathematical modeling appli-cable to corrosion processes, which will deter-mine the intensity of mass transfer and predict the service life of concrete and reinforced con-crete structures. Mathematical models for cor-rosion of the 1st and 2nd types are given, which allow calculating the concentration of “free” calcium hydroxide depending on the thickness of the concrete structure. These mathematical models also allow us to determine the concen-tration of the transferred target component in a liquid acid-salt medium and find the average value of the concentration at any time. One of the important differences of the considered mathematical model for acid corrosion is its dependence on the concentration of the target component in the liquid phase...


2020 ◽  
Vol 7 (3) ◽  
pp. 37-44
Author(s):  
KONSTANTIN NAPREENKO ◽  
◽  
ROMAN SAVELEV ◽  
ALEKSEY TROFIMOV ◽  
ANNA LAMTYUGINA ◽  
...  

The article discusses methods for determining the hydraulic resistance of units of an accident-resistant fuel system. A detailed description of the need to create such fuel systems for modern helicopters is given. The development of such systems today is impossible without the use of the method of mathematical modeling, which allows to qualitatively solve problems arising in the design process. To obtain accurate research results, it is necessary to have a complete description of all elements and assemblies of the system. Methods for determining the hydraulic characteristics of AFS elements using the drag coefficient, reference literature and CFD codes are considered. As the investigated AFS units, a drain valve and burst fitting were studied in the article. A hydraulic calculation of these AFS elements ware performed, the simulation results are presented in the ANSYS CFX software package. Also as the calculation results of bursting fitting, the pressure distribution fields of full and static pressure, velocity and streamlines are also shown. An experimental setup for validating the results obtained using the mathematical modeling method is considered, as well as a methodology for conducting a full-scale experiment to determine the hydraulic resistance of the unit. Materials have been prepared for inclusion in a one-dimensional mathematical model of an accident-resistant fuel system.


1988 ◽  
Vol 53 (6) ◽  
pp. 1181-1197
Author(s):  
Vladimír Kudrna

The paper presents alternative forms of partial differential equations of the parabolic type used in chemical engineering for description of heat and mass transfer. It points at the substantial difference between the classic form of the equations, following from the differential balances of mass and enthalpy, and the form following from the concept of stochastic motion of particles of mass or energy component. Examples are presented of the processes that may be described by the latter method. The paper also reviews the cases when the two approaches become identical.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


Sign in / Sign up

Export Citation Format

Share Document