MATHEMATICAL MODELING OF CONCRETE STRUCTURE CORROSION IN BIOLOGICALLY AGGRESSIVE ENVIRONMENTS

2021 ◽  
Vol 3 (102) ◽  
pp. 55-67
Author(s):  
VARVARA E. RUMYANTSEVA ◽  
SVETLANA A. LOGINOVA ◽  
NATALIA E. KARTSEVA

In the aquatic environment, biocorrosion is an important factor affecting the reliability and durability of concrete structures. The destruction of cement concretes during biological corrosion is determined by the processes of mass transfer. The article presents the development of a calculated mathematical model of liquid corrosion in cement concrete, taking into account the biogenic factor. For the first time, a model of mass transfer in an unbounded two-layer plate is considered in the form of differential equations of parabolic type in partial derivatives with boundary conditions of the second kind at the interface between concrete and liquid and of the fourth kind at the interface between concrete and biofilm. The results of a numerical experiment are presented to study the influence of the coefficients of mass conductivity and mass transfer on the kinetics and dynamics of the process.

2016 ◽  
Vol 20 (2) ◽  
pp. 81-89
Author(s):  
Monika Gwadera

AbstractThe aim of this paper is to present the adsorption chillers technology. The operating principle of these systems, the adsorbent-adsorbate pairs that are frequently applied and the enhancement techniques that allow improvement of their efficiency are presented. Analysis of the mass transfer and principles of mathematical modeling of such systems are also discussed. In the further part of the text, the results of experimental studies and comparison of these results with calculations based on the mathematical model of adsorption were presented.


Author(s):  
Anatolii Vlasyuk ◽  
Viktor Ogiychuk

The nonlinear mathematical model of a process micro irrigation in non-saturated of soil layer under of heat and mass transfer has presented. The numerical solution of the espective boundary value problem has obtained by the method of finite differences using the monotonic scheme. Software had created on the basic of developed algorithms and a series of numerical experiments were done.


Author(s):  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Edmunds Teirumnieks ◽  
Harijs Kalis

The mathematical model for calculation of concentration of metals for 3 layers peat blocks is developed due to solving the 3-D boundary-value problem in multilayered domain-averaging and finite difference methods are considered. As an example, mathematical models for calculation of Fe and Ca concentrations have been analyzed.


Author(s):  
Sergey V. Fedosov ◽  
Varvara Eu. Roumyantseva ◽  
Viktoriya S. Konovalova ◽  
Svetlana A. Loginova

The paper presents a mathematical model of mass transfer in the processes of corrosion of the first type of cement concrete at the level of phenomenological equations for a closed reservoir-liquid system. A step-by-step transition to the recording of the boundary value mass conduction problem in dimensionless coordinates is shown. The solutions of the boundary value mass conduction problem for the region of large and small values of Fourier numbers are obtained.


2020 ◽  
Vol 6 (99) ◽  
pp. 22-35
Author(s):  
SVETLANA A. LOGINOVA ◽  
ILYA N. GOGLEV

The article describes the features of various types of cement concrete corrosion: liquid, acid and biological corrosion, which are most often detected at the stage of inspection of concrete and reinforced concrete building struc-tures. The authors consider the possibility of using methods of mathematical modeling appli-cable to corrosion processes, which will deter-mine the intensity of mass transfer and predict the service life of concrete and reinforced con-crete structures. Mathematical models for cor-rosion of the 1st and 2nd types are given, which allow calculating the concentration of “free” calcium hydroxide depending on the thickness of the concrete structure. These mathematical models also allow us to determine the concen-tration of the transferred target component in a liquid acid-salt medium and find the average value of the concentration at any time. One of the important differences of the considered mathematical model for acid corrosion is its dependence on the concentration of the target component in the liquid phase...


Author(s):  
Marina Sergeevna Maklusova ◽  
Maria Konstantinovna Kosheleva ◽  
Olga Roaldovna Dornyak

The object of research is a fiber-forming polymer - polycaproamide. The process of drying of polycaproamide granules, after aqueous extraction of low-molecular compounds from them, is an important stage of producing of polyamide fiber nylon and largely determines the quality of the target product. To obtain a high-quality fiber, the drying of the granules should provide a sufficiently high degree of its dehydration. The average final moisture content of the material should be no more than 0.1%. With a low moisture content, the drying process slows down, so the calculation of the kinetics of dewatering of granules can not be carried out using a constant effective mass-transfer coefficient (moisture diffusion). In this paper we present a calculation technique for determining two local parameters of mass transfer: the water diffusion coefficient in polycaproamide (as a liquid) and the so-called criterion for phase transitions, which depend on the moisture content of the material and are determined by its sorption properties. The report presents the results of numerical calculations illustrating the development of two-dimensional fields of moisture content, temperature, pressure and vapor concentration in the vapor-gas phase for cylindrical granules in convective drying. To describe the processes of heat and mass transfer during the drying of granules, a nonstationary nonlinear 2D model is used that includes transport equations averaged over the microvolume of the material: the liquid phase transfer equation; heat equation; equation for vapor-gas phase pressure; equation for the concentration of the vapor component. The nonstationary nonlinear conjugate mathematical model is studied numerically. A feature of the presented model is the possibility of an analytical calculation of the local mass transfer coefficients of a liquid, taking into account the sorption properties of the material, the permeability coefficient and the local values ​​of humidity and temperature. Determination of the local coefficients of moisture transfer is carried out on the basis of the formulas obtained in the analysis of a more general mathematical model of heat and mass transfer carried out based on the mechanics of multiphase systems developed in the works of R.I. Nigmatulin, and S. Whitaker. The structure of the samples was investigated by three independent methods in order to obtain the most complete idea of ​​it and to compare the obtained characteristics. The isotherms of the sorption of polycaproamide were obtained experimentally on a vacuum sorption plant with Mac-Ben-Bakr weights. Comparison of the results of mathematical modeling of heat and mass transfer in the granule and data of the laboratory experiment on the kinetics of polycaproamide granule drying showed good agreement between the calculated and experimental data. The constructed mathematical model allows to form energy-efficient resource-saving regimes for drying granules of polycaproamide.Keywords: convective drying, mathematical modeling, polycaproamide.


Sign in / Sign up

Export Citation Format

Share Document