Application of cold gas dynamic spraying as an additive technology for producing materials based on nickel aluminide and titanium aluminide

Author(s):  
D. A. Gerashchenkov

Metal additive manufacturing is widely studied for its unique advantages over traditional manufacturing processes. It is used to form complex components of Ti, Fe or Ni alloys. However, for non-ferrous alloys – aluminum, magnesium, copper – additive technologies are not used due to rapid melting during laser, electron beam and/or arc treatment. Cold spraying is widely used as an effective technology for applying high quality coatings in the mass production of metal and alloy products and/or metal matrix composite coatings. In addition, cold spraying is a serious and effective tool for the additive manufacturing of metals, and research in this area is currently becoming intense. During heat treatment of materials obtained by cold spraying, new chemical compounds are formed – both intermetallic compounds and hardening ceramic inclusions that increase the microhardness. However, as a result of a change in the structure during chemical transformations, a change in the geometry of the product and the formation of pores can be observed.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


2017 ◽  
Vol 330 ◽  
pp. 87-91 ◽  
Author(s):  
Deyan Li ◽  
Yongfeng Gong ◽  
Xiuyong Chen ◽  
Botao Zhang ◽  
Haijun Zhang ◽  
...  

2018 ◽  
Vol 190 ◽  
pp. 02005 ◽  
Author(s):  
Markus Hirtler ◽  
Angelika Jedynak ◽  
Benjamin Sydow ◽  
Alexander Sviridov ◽  
Markus Bambach

Within the scope of consumer-oriented production, individuality and cost-effectiveness are two essential aspects, which can barely be met by traditional manufacturing technologies. Conventional metal forming techniques are suitable for large batch sizes. If variants or individualized components have to be formed, the unit costs rise due to the inevitable tooling costs. For such applications, additive manufacturing (AM) processes, which do not require tooling, are more suitable. Due to the low production rates and limited build space of AM machines, the manufacturing costs are highly dependent on part size and batch size. Hence, a combination of both manufacturing technologies i.e. conventional metal forming and additive manufacturing seems expedient for a number of applications. The current study develops a process chain combining forming and additive manufacturing. First, a semi-finished product is formed with forming tools of reduced complexity and then finished by additive manufacturing. This research investigates the addition of features using AlSi12 created by Wire Arc Additive Manufacturing (WAAM) on formed EN-AW 6082 preforms. By forming, the strength of the material was increased, while this effect was partly reduced by the heat input of the WAAM process.


2021 ◽  
Author(s):  
Angela Serra ◽  
Martina Malarco ◽  
Alessandro Musacchio ◽  
Giulio Buia ◽  
Pietro Bartocci ◽  
...  

Abstract Additive manufacturing (AM hereinafter) is revolutionizing prototyping production and even small-scale manufacturing. Usually it is assumed that AM has lower environmental impact, compared to traditional manufacturing processes, but there have been no comprehensive environmental life-cycle assessment studies confirming this, especially for the gas turbines (GT hereinafter) and turbomachinery sector. In this study the core processes performed at Baker Hughes site in Florence are considered, together with the powder production via atomization process to describe the overall environmental impact of a GT shroud produced through additive manufacturing and comparing it with traditional investment casting production process. Particular attention is given to materials production and logistics. The full component life cycle starts from the extraction of raw materials during mining, their fusion and, as said, the atomization process, the powders are transported to the gas turbines production site where they are used as base material in additive manufacturing, also machining and finishing processes are analyzed as they differ for a component produced by AM respect to one produced by traditional investment casting. From the analysis of the data obtained, it emerges that the AM process has better performances in terms of sustainability than the Investment casting (IC hereinafter), highlighted above all by a decrease in greenhouse gas emissions (GHG hereinafter) of over 40%.


Author(s):  
Brandon Bethers ◽  
Yang Yang

Abstract Cuttlebone, the internal shell structure of a cuttlefish, presents a unique labyrinthian wall-septa design that promotes high energy absorption, porosity, and damage tolerance. This structure offers us an inspiration for the design of lightweight and strong structures for potential applications in mechanical, aerospace and biomedical engineering. However, the complexity of the cuttlebones structural design makes its fabrication by traditional manufacturing techniques not feasible. The advances in additive manufacturing (3D printing) make highly complex structures like cuttlebone possible to manufacture. In this work, the authors sought to establish comparative data between cuttlebone structures and some common support structures used in additive manufacturing. The structures compared to cuttlebone in this work include the cubic, honeycomb and triangular support structures. This was accomplished by using CAD modeling and simulation software. This study found that the cuttlefish structures had higher average stress values than the others but similar average strain values. This leads to a higher modulus of elasticity for the cuttlebone structures. The data suggests that further research into cuttlebone structures could produce future designs that improve upon the current well-established additive manufacturing support structures. Further study will be performed for the 3D printing of cuttlebone inspired structures by using various types of materials, such as soft and rigid polymers, functional ceramics, composites, and metals.


2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Rohan Prabhu ◽  
Rainmar L. Leguarda ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Abstract The capabilities of additive manufacturing (AM) open up designers’ solution space and enable them to build designs previously impossible through traditional manufacturing (TM). To leverage this design freedom, designers must emphasize opportunistic design for AM (DfAM), i.e., design techniques that leverage AM capabilities. Additionally, designers must also emphasize restrictive DfAM, i.e., design considerations that account for AM limitations, to ensure that their designs can be successfully built. Therefore, designers must adopt a “dual” design mindset—emphasizing both, opportunistic and restrictive DfAM—when designing for AM. However, to leverage AM capabilities, designers must not only generate creative ideas for AM but also select these creative ideas during the concept selection stage. Design educators must specifically emphasize selecting creative ideas in DfAM, as ideas perceived as infeasible through the traditional design for manufacturing lens may now be feasible with AM. This emphasis could prevent creative but feasible ideas from being discarded due to their perceived infeasibility. While several studies have discussed the role of DfAM in encouraging creative idea generation, there is a need to investigate concept selection in DfAM. In this paper, we investigated the effects of four variations in DfAM education: (1) restrictive, (2) opportunistic, (3) restrictive followed by opportunistic (R-O), and (4) opportunistic followed by restrictive (O-R), on students’ concept selection process. We compared the creativity of the concepts generated by students to the creativity of the concepts they selected. The creativity of designs was measured on four dimensions: (1) uniqueness, (2) usefulness, (3) technical goodness, and (4) overall creativity. We also performed qualitative analyses to gain insight into the rationale provided by students when making their design decisions. From the results, we see that only teams from the restrictive and dual O-R groups selected ideas of higher uniqueness and overall creativity. In contrast, teams from the dual R-O DfAM group selected ideas of lower uniqueness compared with the mean uniqueness of ideas generated. Finally, we see that students trained in opportunistic DfAM emphasized minimizing build material the most, whereas those trained only in restrictive DfAM emphasized minimizing build time. These results highlight the need for DfAM education to encourage AM designers to not just generate creative ideas but also have the courage to select them for the next stage of design.


Author(s):  
A. Seidel ◽  
T. Maiwald ◽  
T. Finaske ◽  
S. Polenz ◽  
S. Saha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document