scholarly journals Analytical solution of systems of Volterra integro-differential equations using modified differential transform method

2021 ◽  
Vol 26 (01) ◽  
pp. 1-9
Author(s):  
Sh. Al-Ahmad ◽  
I. B. Sulaiman ◽  
M. A. A. Nawi ◽  
M. Mamat ◽  
M. Z. Ahmad
2011 ◽  
Vol 110-116 ◽  
pp. 4532-4536 ◽  
Author(s):  
K. Torabi ◽  
J. Nafar Dastgerdi ◽  
S. Marzban

In this paper, free vibration differential equations of cracked beam are solved by using differential transform method (DTM) that is one of the numerical methods for ordinary and partial differential equations. The Euler–Bernoulli beam model is proposed to study the frequency factors for bending vibration of cracked beam with ant symmetric boundary conditions (as one end is clamped and the other is simply supported). The beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in both vertical displacement and rotational due to bending. The differential equations for the free bending vibrations are established and then solved individually for each segment with the corresponding boundary conditions and the appropriated compatibility conditions at the cracked section by using DTM and analytical solution. The results show that DTM provides simple method for solving equations and the results obtained by DTM converge to the analytical solution with much more accurate for both shallow and deep cracks. This study demonstrates that the differential transform is a feasible tool for obtaining the analytical form solution of free vibration differential equation of cracked beam with simple expression.


2020 ◽  
Vol 25 (2) ◽  
pp. 122-129
Author(s):  
M.M. Rashidi ◽  
F. Rabiei ◽  
S. Naseri Nia ◽  
S. Abbasbandy

AbstractIn this article, the semi-analytical method known as the Differential Transform Method (DTM) for solving different types of differential equations is reviewed. First, basic definitions and formulas of DTM and Differential Transform-Padé approximation (DTM-Padé), which are used to increase the convergence and accuracy of DTM approximations, are discussed. Then both techniques of DTM and DTM-Padé, which have been successfully applied to partial differential equations, as well as the application of these methods in fluid mechanic and heat transfer are presented. In addition, the extension of DTM for integral differential equations and the fuzzy differential transformation method (FDTM) for fuzzy problems are discussed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Seyyedeh Roodabeh Moosavi Noori ◽  
Nasir Taghizadeh

AbstractIn this study, a hybrid technique for improving the differential transform method (DTM), namely the modified differential transform method (MDTM) expressed as a combination of the differential transform method, Laplace transforms, and the Padé approximant (LPDTM) is employed for the first time to ascertain exact solutions of linear and nonlinear pantograph type of differential and Volterra integro-differential equations (DEs and VIDEs) with proportional delays. The advantage of this method is its simple and trusty procedure, it solves the equations straightforward and directly without requiring large computational work, perturbations or linearization, and enlarges the domain of convergence, and leads to the exact solution. Also, to validate the reliability and efficiency of the method, some examples and numerical results are provided.


2021 ◽  
Vol 5 (1) ◽  
pp. 51-63
Author(s):  
Mawia Osman ◽  
◽  
Zengtai Gong ◽  
Altyeb Mohammed Mustafa ◽  
◽  
...  

In this paper, the reduced differential transform method (RDTM) is applied to solve fuzzy nonlinear partial differential equations (PDEs). The solutions are considered as infinite series expansions which converge rapidly to the solutions. Some examples are solved to illustrate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document