scholarly journals Magmatic Epidote and Amphibole from the Rio Espinharas Hybrid Complex, Northeastern Brazil

2005 ◽  
Vol 32 (2) ◽  
pp. 41 ◽  
Author(s):  
THOMAS CAMPOS ◽  
ANA MARGARIDA NEIVA ◽  
LAURO VALENTIM STOLL NARDI ◽  
LUCIANO SCHAEFFER PEREIRA ◽  
LEONARDO FRAGA BONZANINI ◽  
...  

The petrography and chemistry of epidote and amphibole from the Rio Espinharas hybrid complex (REHC), northeastern Brazil are reported. The Rio Espinharas complex is composed of an intimate association of diorite to shoshonitic metaluminous quartzmonzonite to slightly peraluminous syenogranite. The epidote shows four textural relationships: three are primary and one is resulting from sub-solidus reaction. Euhedral epidote is dispersed and associated mainly with biotite and amphibole. In some cases euhedral crystals of the epidote contain allanite cores, which are subhedral to anhedral and constitute in average less than 20% of the whole grain. The contact between primary epidote and plagioclase is corroded, suggesting reaction with the host-magma. Secondary anhedral epidote is rare and results from plagioclase alteration. The preservation of magmatic epidote in granitic rocks emplaced in the upper crust is attributed to rapid magma ascent, which implies fast upward transport probably by dyking associated to shear zone. The REHC occurs between two transcurrent faults that impose an elongated shape, suggesting that magma filled fractures. The time of 14 years required for dissolution zones of 0.15 mm width of epidote on porphyritic quartz monzonite, corresponds to an average ascent rate of ≥ 700 m year-1 from 7.1 to 2.9 kbar.

2019 ◽  
Author(s):  
Thomas M. Belgrano ◽  
Larryn W. Diamond ◽  
Yves Vogt ◽  
Andrea R. Biedermann ◽  
Samuel A. Gilgen ◽  
...  

Abstract. Recent studies have revealed genetic similarities between Tethyan ophiolites and oceanic proto-arc sequences formed above nascent subduction zones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as an analogue for this proto-arc crust. Though proto-arc magmatism and the mechanisms of subduction-initiation are of great interest, insight is difficult to gain from drilling and limited surface outcrops in submarine fore-arcs. In contrast, the Semail ophiolite, in which the 3–5 km thick upper-crustal succession is exposed in an oblique cross-section, presents an opportunity to assess the architecture and volumes of different volcanic rocks that form during the protoarc stage. To determine the distribution of the volcanic rocks and to aid exploration for the volcanogenic massive sulphide (VMS) deposits that they host, we have re-mapped the volcanic units of the Semail ophiolite by integrating new field observations, geochemical analyses and geophysical interpretations with pre-existing geological maps. By linking the major element compositions of the volcanic units to rock magnetic properties, we were able to use aeromagnetic data to infer the extension of each outcropping unit below sedimentary cover, resulting in in a new map showing 2100 km2 of upper-crustal bedrock. Whereas earlier maps distinguished two main volcanostratigraphic units, we have distinguished four, recording the progression from early spreading-axis basalts (Geotimes) through to axial to off-axial depleted basalts (Lasail), to post-axial tholeiites (Tholeiitic Alley) and finally boninites (Boninitic Alley). Geotimes (Phase 1) axial dykes and lavas make up ~55 vol% of the Semail upper crust, whereas post-axial (Phase 2) lavas constitute the remaining ~ 45 vol % and ubiquitously cover the underlying axial crust. The Semail boninites occur as discontinuous accumulations up to 2 km thick at the top of the sequence and constitute ~ 15 vol % of the upper crust. The new map provides a basis for targeted exploration of the gold-bearing VMS deposits hosted by these boninites. The thickest boninite accumulations occur in the Fizh block, where magma ascent occurred along crustal-scale faults that are connected to shear zones in the underlying mantle rocks, which in turn are associated with economic chromitite deposits. Locating major boninite feeder zones may thus be an indirect means to explore for chromitites in the underlying mantle.


Lithos ◽  
2002 ◽  
Vol 64 (3-4) ◽  
pp. 131-153 ◽  
Author(s):  
T.F.C Campos ◽  
A.M.R Neiva ◽  
L.V.S Nardi

1974 ◽  
Vol 11 (5) ◽  
pp. 650-657 ◽  
Author(s):  
T. E. Smith

Studies of part of a large batholith in southwest Nova Scotia show that granitic rocks of two different ages penetrate the Lower Palaeozoic metasediments of the Meguma Group. They are distinguished by their field relationships, mineralogy, and petrology from an older series, varying from biotite granodiorite through quartz monzonite to muscovite biotite granite, which is penetrated by younger large dikes, up to 1.5 km wide, of alaskite. Rb–Sr whole rock isochron ages show that the older series was emplaced approximately 415 m.y. ago and that the younger alaskite dikes were emplaced about 350 m.y. ago. Major and trace element chemistry shows that the older series of granitic rocks were formed by differentiation of a calc-alkali magma in situ. The younger dikes are all highly silicic, show limited major element variation, and have been affected by hydrothermal metasomatism.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1414
Author(s):  
Baoqiang Tai ◽  
Wentian Mi ◽  
Genhou Wang ◽  
Yingjie Li ◽  
Xu Kong

Abundant Early Cretaceous magmatism is conserved in the central and southern Great Xing’an Range (GXR) and has significant geodynamic implications for the study of the Late Mesozoic tectonic framework of northeast China. In this study, we provide new high-precision U–Pb zircon geochronology, whole-rock geochemistry, and zircon Hf isotopic data for representative intrusive rocks from the northern part of the Ulanhot area to illustrate the petrogenesis types and magma source of these rocks and evaluate the tectonic setting of the central-southern GXR. Laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) zircon U–Pb dating showed that magmatism in the Ulanhot area (monzonite porphyry: 128.07 ± 0.62 Ma, quartz monzonite porphyry: 127.47 ± 0.36, quartz porphyry: 124.85 ± 0.34, and granite porphyry: 124.15 ± 0.31 Ma) occurred during the Early Cretaceous. Geochemically, monzonite porphyry belongs to the metaluminous and alkaline series rocks and is characterized by high Al2O3 (average 17.74 wt.%) and TiO2 (average 0.88 wt.%) and low Ni (average 4.63 ppm), Cr (average 6.69 ppm), Mg# (average 31.11), Y (average 15.16 ppm), and Yb (average 1.62 ppm) content with enrichment in Ba, K, Pb, Sr, Zr, and Hf and depletion in Ti, Nb, and Ta. The granitic rocks (e.g., quartz monzonite porphyry, quartz porphyry, and granite porphyry) pertain to the category of high-K calc-alkaline rocks and are characterized by high SiO2 content (>66 wt.%) and low MgO (average 0.69 wt.%), Mg# (average 31.49 ppm), Ni (average 2.78 ppm), and Cr (average 8.10 ppm) content, showing an affinity to I-type granite accompanied by Nb, Ta, P, and Ti depletion and negative Eu anomalies (δEu = 0.57–0.96; average 0.82). The Hf isotopic data suggest that these rocks were the product of the partial melting of juvenile crustal rocks. Notably, fractionation crystallization plays a crucial role in the process of magma emplacement. Combining our study with published ones, we proposed that the Early Cretaceous intrusive rocks in the Ulanhot area were formed in an extensional tectonic background and compactly related to the subduction of the Paleo-Pacific Ocean plate.


2018 ◽  
Vol 69 (5) ◽  
pp. 453-466 ◽  
Author(s):  
Ján Spišiak ◽  
Lucia Vetráková ◽  
David Chew ◽  
Štefan Ferenc ◽  
Tomáš Mikuš ◽  
...  

Abstract Calc–alkaline lamprophyres are known from several localities in the Malá Fatra Mountains. They form dykes (0.5–3 m) of varying degree of alteration that have intruded the surrounding granitoid rocks which are often incorporated xenoliths. Clinopyroxenes (diopside to augite), amphiboles (kaersutitic), biotites (annite) and plagioclases are major primary minerals of the dykes, accessory minerals include apatite, ilmenite, rutile, pyrite, chalcopyrite, and pyrrhotite. Apatite has a relatively low F, but increased Cl content compared to typical apatite from lamprophyres or magmatic apatite from granitic rocks in the Western Carpathians. The chemical composition of the lamprophyres indicates their calc–alkaline character, but affinity to alkaline lamprophyres is suggested by the Ti enrichment in clinopyroxene, amphibole and biotite. According to modal classification of the minerals, the studied rocks correspond to spessartite. The differences in the chemical composition of the rocks (including Sr and Nd isotopes) probably result from the contamination of primary magma by crustal material during magma ascent. The age of the lamprophyres, based on U/Pb dating in apatite, is 263.4 ± 2.6 Ma.


Author(s):  
Leonard H. Larsen ◽  
Arie Poldervaart

SummaryMorphological characters of zircons in concentrates have been studied by measurement of length along the c-axis and breadth along the a1- or a2-axis of 200 doubly terminated crystals for each sample. The sample is represented graphically by a line fitted mathematically to a scatter plot of the measurements. This line, the reduced major axis, is visualized as a growth trend, and samples are described and compared statistically.From a careful study of zircons in a tonalite it is concluded that zircon crystallized over a short range before crystallization of the main constituent minerals.The distribution of zircon in a batholith of magmatic origin has also been studied. The batholith grades from a core of granodiorite to a mantle of tonalite, but the zircons are uniform throughout. Small bodies of granodiorite and quartz monzonite have sharp contacts against the main batholithic rocks, and zircon samples from these intrusives differ from one another and from those of the batholith. It is concluded that the batholith represents a single intrusion which differentiated after emplacement, and that the later intrusives each crystallized under different conditions.


Geology ◽  
2020 ◽  
Vol 48 (11) ◽  
pp. 1088-1093
Author(s):  
Daniel O’Hara ◽  
Leif Karlstrom ◽  
David W. Ramsey

Abstract Increased resolution of data constraining topography and crustal structures provides new quantitative ways to assess province-scale surface-subsurface connections beneath volcanoes. We used a database of mapped vents to extract edifices with known epoch ages from digital elevation models (DEMs) in the Cascades arc (western North America), deriving volumes that likely represent ∼50% of total Quaternary eruptive output. Edifice volumes and spatial vent density correlate with diverse geophysical data that fingerprint magmatic influence in the upper crust. Variations in subsurface structures consistent with volcanism are common beneath Quaternary vents throughout the arc, but they are more strongly associated with younger vents. Geophysical magmatic signatures increase in the central and southern Cascade Range (Cascades), where eruptive output is largest and vents are closely spaced. Vents and correlated crustal structures, as well as temporal transitions in the degree of spatially localized versus distributed eruptions, define centers with lateral extents of ∼100 km throughout the arc, suggesting a time-evolving spatial focusing of magma ascent.


1968 ◽  
Vol 5 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Gunter Faure ◽  
J. G. Murtaugh ◽  
R. J. E. Montigny

The central part of the Transantarctic Mountain chain consists of a basement complex of igneous and metamorphic rocks overlain nonconformably by sedimentary rocks of late Paleozoic age, including Permian tillites and coal measures. The basement complex is exceptionally well exposed in the Wisconsin Range of the Horlick Mountains, which are located about 500 km from the South Pole. In this area clastic metasedimentary rocks and overlying metavolcanic rocks of probable pyroclastic origin are intruded by a variety of granitic rocks of the Wisconsin Range batholith, including rapakivi granites and quartz diorites, which are in turn cut by bodies of quartz monzonite, and aplite and pegmatite dikes. The basement complex elsewhere in the central Transantarctic Mountains also includes Cambrian limestones overlain by acid volcanic pyroclastic rocks and lava flows.Age determinations by the Rb–Sr method applied to suites of total rock specimens suggest the presence of two orogenic events accompanied by intrusions of granitic plutons. The first of these occurred about 630 ± 25 m.y. ago and was accompanied by the formation of rapakivi granites. The second took place during the Ordovician Period about 480 ± 10 m.y. ago and involved the intrusion of quartz monzonite and pegmatite dikes. The metasedimentary rocks, which were intruded by both of the granitic rocks, give an apparent age of 460 ± 16 m.y., while the overlying pyroclastic unit was dated at 633 ± 13 m.y. A Precambrian age for the metasedimentary and metavolcanic rocks is consistent with the dating and the field evidence. Rhyolites from localities in the Byrd Mountains and the Long Hills were dated at 489 ± 30 and 498 ± 45 m.y. and are late Cambrian to early Ordovician in age.


Solid Earth ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 1181-1217
Author(s):  
Thomas M. Belgrano ◽  
Larryn W. Diamond ◽  
Yves Vogt ◽  
Andrea R. Biedermann ◽  
Samuel A. Gilgen ◽  
...  

Abstract. Numerous studies have revealed genetic similarities between Tethyan ophiolites and oceanic “proto-arc” sequences formed above nascent subduction zones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as an analogue for this proto-arc crust. Though proto-arc magmatism and the mechanisms of subduction initiation are of great interest, insight is difficult to gain from drilling and limited surface outcrops in marine settings. In contrast, the 3–5 km thick upper-crustal succession of the Semail ophiolite, which is exposed in an oblique cross section, presents an opportunity to assess the architecture and volumes of different volcanic rocks that form during the proto-arc stage. To determine the distribution of the volcanic rocks and to aid exploration for the volcanogenic massive sulfide (VMS) deposits that they host, we have remapped the volcanic units of the Semail ophiolite by integrating new field observations, geochemical analyses, and geophysical interpretations with pre-existing geological maps. By linking the major-element compositions of the volcanic units to rock magnetic properties, we were able to use aeromagnetic data to infer the extension of each outcropping unit below sedimentary cover, resulting in a new map showing 2100 km2 of upper-crustal bedrock. Whereas earlier maps distinguished two main volcanostratigraphic units, we have distinguished four, recording the progression from early spreading-axis basalts (Geotimes), through axial to off-axial depleted basalts (Lasail), to post-axial tholeiites (Tholeiitic Alley), and finally boninites (Boninitic Alley). Geotimes (“Phase 1”) axial dykes and lavas make up ∼55 vol % of the Semail upper crust, whereas post-axial (“Phase 2”) lavas constitute the remaining ∼45 vol % and ubiquitously cover the underlying axial crust. Highly depleted boninitic members of the Lasail unit locally occur within and directly atop the axial sequence, marking an earlier onset of boninitic magmatism than previously known for the ophiolite. The vast majority of the Semail boninites, however, belong to the Boninitic Alley unit and occur as discontinuous accumulations up to 2 km thick at the top of the ophiolite sequence and constitute ∼15 vol % of the upper crust. The new map provides a basis for targeted exploration of the gold-bearing VMS deposits hosted by these boninites. The thickest boninite accumulations occur in the Fizh block, where magma ascent occurred along crustal-scale faults that are connected to shear zones in the underlying mantle rocks, which in turn are associated with economic chromitite deposits. Locating major boninite feeder zones may thus be an indirect means to explore for chromitites in the underlying mantle.


Sign in / Sign up

Export Citation Format

Share Document