scholarly journals On the Class of the Diophantine Equations (10K + A)x + (10M + A)y = z2 when A = 1, 3, 7, 9 with Positive Integers x, y, z

2020 ◽  
Vol 21 (2) ◽  
pp. 103-111
Author(s):  
Nechemia Burshtein
2008 ◽  
Vol 60 (3) ◽  
pp. 491-519 ◽  
Author(s):  
Yann Bugeaud ◽  
Maurice Mignotte ◽  
Samir Siksek

AbstractWe solve several multi-parameter families of binomial Thue equations of arbitrary degree; for example, we solve the equation5uxn − 2r3s yn = ±1,in non-zero integers x, y and positive integers u, r, s and n ≥ 3. Our approach uses several Frey curves simultaneously, Galois representations and level-lowering, new lower bounds for linear forms in 3 logarithms due to Mignotte and a famous theorem of Bennett on binomial Thue equations.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


2011 ◽  
Vol 07 (04) ◽  
pp. 981-999 ◽  
Author(s):  
TAKAFUMI MIYAZAKI

Let a, b, c be relatively prime positive integers such that ap + bq = cr with fixed integers p, q, r ≥ 2. Terai conjectured that the equation ax + by = cz has no positive integral solutions other than (x, y, z) = (p, q, r) except for specific cases. Most known results on this conjecture concern the case where p = q = 2 and either r = 2 or odd r ≥3. In this paper, we consider the case where p = q = 2 and r > 2 is even, and partially verify Terai's conjecture.


2009 ◽  
Vol 51 (1) ◽  
pp. 187-191 ◽  
Author(s):  
YASUHIRO KISHI

AbstractWe prove that the class number of the imaginary quadratic field $\Q(\sqrt{2^{2k}-3^n})$ is divisible by n for any positive integers k and n with 22k < 3n, by using Y. Bugeaud and T. N. Shorey's result on Diophantine equations.


2014 ◽  
Vol 91 (1) ◽  
pp. 11-18
Author(s):  
NOBUHIRO TERAI

AbstractLet $a$ and $m$ be relatively prime positive integers with $a>1$ and $m>2$. Let ${\it\phi}(m)$ be Euler’s totient function. The quotient $E_{m}(a)=(a^{{\it\phi}(m)}-1)/m$ is called the Euler quotient of $m$ with base $a$. By Euler’s theorem, $E_{m}(a)$ is an integer. In this paper, we consider the Diophantine equation $E_{m}(a)=x^{l}$ in integers $x>1,l>1$. We conjecture that this equation has exactly five solutions $(a,m,x,l)$ except for $(l,m)=(2,3),(2,6)$, and show that if the equation has solutions, then $m=p^{s}$ or $m=2p^{s}$ with $p$ an odd prime and $s\geq 1$.


Author(s):  
Apoloniusz Tyszka

We prove: (1) the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable, (2) the set of all Diophantine equations which have at most finitely many solutions in positive integers is not recursively enumerable, (3) the set of all Diophantine equations which have at most finitely many integer solutions is not recursively enumerable, (4) analogous theorems hold for Diophantine equations D(x1, &hellip;, xp) = 0, where p &isin; N\{0} and for every i &isin; {1, &hellip;, p} the polynomial D(x1, &hellip;, xp) involves a monomial M with a non-zero coefficient such that xi divides M, (5) the set of all Diophantine equations which have at most k variables (where k&nbsp;&ge; 9) and at most finitely many solutions in non-negative integers is not recursively enumerable.


2008 ◽  
Vol Volume 31 ◽  
Author(s):  
Ajai Choudhry ◽  
Jaroslaw Wroblewski

International audience This paper is concerned with the system of simultaneous diophantine equations $\sum_{i=1}^6A_i^k=\sum_{i=1}^6B_i^k$ for $k=2, 4, 6, 8, 10.$ Till now only two numerical solutions of the system are known. This paper provides an infinite family of solutions. It is well-known that solutions of the above system lead to ideal solutions of the Tarry-Escott Problem of degree $11$, that is, of the system of simultaneous equations, $\sum_{i=1}^{12}a_i^k=\sum_{i=1}^{12}b_i^k$ for $k=1, 2, 3,\ldots,11.$ We use one of the ideal solutions to prove new results on sums of $13^{th}$ powers. In particular, we prove that every integer can be expressed as a sum or difference of at most $27$ thirteenth powers of positive integers.


2010 ◽  
Vol 06 (02) ◽  
pp. 219-245 ◽  
Author(s):  
JEFFREY C. LAGARIAS

This paper considers the cyclic system of n ≥ 2 simultaneous congruences [Formula: see text] for fixed nonzero integers (r, s) with r > 0 and (r, s) = 1. It shows there are only finitely many solutions in positive integers qi ≥ 2, with gcd (q1q2 ⋯ qn, s) = 1 and obtains sharp bounds on the maximal size of solutions for almost all (r, s). The extremal solutions for r = s = 1 are related to Sylvester's sequence 2, 3, 7, 43, 1807,…. If the positivity condition on the integers qi is dropped, then for r = 1 these systems of congruences, taken ( mod |qi|), have infinitely many solutions, while for r ≥ 2 they have finitely many solutions. The problem is reduced to studying integer solutions of the family of Diophantine equations [Formula: see text] depending on three parameters (r, s, m).


2021 ◽  
Vol 29 (2) ◽  
pp. 93-105
Author(s):  
Attila Bérczes ◽  
Maohua Le ◽  
István Pink ◽  
Gökhan Soydan

Abstract Let ℕ be the set of all positive integers. In this paper, using some known results on various types of Diophantine equations, we solve a couple of special cases of the ternary equation x2 − y2m = zn , x, y, z, m, n ∈ ℕ, gcd(x, y) = 1, m ≥ 2, n ≥ 3.


Sign in / Sign up

Export Citation Format

Share Document