scholarly journals Validation of Sympathetic Activity Index from Heart Rate Variability series: A Preliminary Muscle Sympathetic Nerve Activity Study

Author(s):  
Gaetano Valenza ◽  
Francesco Faita ◽  
Luca Citi ◽  
J. Philip Saul ◽  
Rosa Maria Bruno ◽  
...  
2010 ◽  
Vol 299 (1) ◽  
pp. R80-R91 ◽  
Author(s):  
Lindsay D. DeBeck ◽  
Stewart R. Petersen ◽  
Kelvin E. Jones ◽  
Michael K. Stickland

Previous research has suggested a relationship between low-frequency power of heart rate variability (HRV; LF in normalized units, LFnu) and muscle sympathetic nerve activity (MSNA). However, investigations have not systematically controlled for breathing, which can modulate both HRV and MSNA. Accordingly, the aims of this experiment were to investigate the possibility of parallel responses in MSNA and HRV (LFnu) to selected acute stressors and the effect of controlled breathing. After data were obtained at rest, 12 healthy males (28 ± 5 yr) performed isometric handgrip exercise (30% maximal voluntary contraction) and the cold pressor test in random order, and were then exposed to hypoxia (inspired fraction of O2 = 0.105) for 7 min, during randomly assigned spontaneous and controlled breathing conditions (20 breaths/min, constant tidal volume, isocapnic). MSNA was recorded from the peroneal nerve, whereas HRV was calculated from ECG. At rest, controlled breathing did not alter MSNA but decreased LFnu ( P < 0.05 for all) relative to spontaneous breathing. MSNA increased in response to all stressors regardless of breathing. LFnu increased with exercise during both breathing conditions. During cold pressor, LFnu decreased when breathing was spontaneous, whereas in the controlled breathing condition, LFnu was unchanged from baseline. Hypoxia elicited increases in LFnu when breathing was controlled, but not during spontaneous breathing. The parallel changes observed during exercise and controlled breathing during hypoxia suggest that LFnu may be an indication of sympathetic outflow in select conditions. However, since MSNA and LFnu did not change in parallel with all stressors, a cautious approach to the use of LFnu as a marker of sympathetic activity is warranted.


2002 ◽  
Vol 93 (3) ◽  
pp. 857-864 ◽  
Author(s):  
John R. Halliwill ◽  
Christopher T. Minson

We tested the hypothesis that acute hypoxia would alter the sensitivity of arterial baroreflex control of both heart rate and sympathetic vasoconstrictor outflow. In 16 healthy, nonsmoking, normotensive subjects (8 women, 8 men, age 20–33 yr), we assessed baroreflex control of heart rate and muscle sympathetic nerve activity by using the modified Oxford technique during both normoxia and hypoxia (12% O2). Compared with normoxia, hypoxia reduced arterial O2 saturation levels from 96.8 ± 0.3 to 80.7 ± 1.4% ( P < 0.001), increased heart rate from 59.8 ± 2.4 to 79.4 ± 2.9 beats/min ( P < 0.001), increased mean arterial pressure from 96.7 ± 2.5 to 105.0 ± 3.3 mmHg ( P = 0.002), and increased sympathetic activity 126 ± 58% ( P < 0.05). The sensitivity for baroreflex control of both heart rate and sympathetic activity was not altered by hypoxia (heart rate: −1.02 ± 0.09 vs. −1.02 ± 0.11 beats · min−1 · mmHg−1; nerve activity: −5.6 ± 0.9 vs. −6.2 ± 0.9 integrated activity · beat−1 · mmHg−1; both P > 0.05). Acute exposure to hypoxia reset baroreflex control of both heart rate and sympathetic activity to higher pressures without changes in baroreflex sensitivity.


2013 ◽  
Vol 305 (8) ◽  
pp. H1238-H1245 ◽  
Author(s):  
Christopher E. Schwartz ◽  
Elisabeth Lambert ◽  
Marvin S. Medow ◽  
Julian M. Stewart

Withdrawal of muscle sympathetic nerve activity (MSNA) may not be necessary for the precipitous fall of peripheral arterial resistance and arterial pressure (AP) during vasovagal syncope (VVS). We tested the hypothesis that the MSNA-AP baroreflex entrainment is disrupted before VVS regardless of MSNA withdrawal using the phase synchronization between blood pressure and MSNA during head-up tilt (HUT) to measure reflex coupling. We studied eight VVS subjects and eight healthy control subjects. Heart rate, AP, and MSNA were measured during supine baseline and at early, mid, late, and syncope stages of HUT. Phase synchronization indexes, measuring time-dependent differences between MSNA and AP phases, were computed. Directionality indexes, indicating the influence of AP on MSNA (neural arc) and MSNA on AP (peripheral arc), were computed. Heart rate was greater in VVS compared with control subjects during early, mid, and late stages of HUT and significantly declined at syncope ( P = 0.04). AP significantly decreased during mid, late, and syncope stages of tilt in VVS subjects only ( P = 0.001). MSNA was not significantly different between groups during HUT ( P = 0.700). However, the phase synchronization index significantly decreased during mid and late stages in VVS subjects but not in control subjects ( P < .001). In addition, the neural arc was significantly affected more than the peripheral arc before syncope. In conclusion, VVS is accompanied by a loss of the synchronous AP-MSNA relationship with or without a loss in MSNA at faint. This provides insight into the mechanisms behind the loss of vasoconstriction and drop in AP independent of MSNA at the time of vasovagal faint.


2013 ◽  
Vol 304 (11) ◽  
pp. R959-R965 ◽  
Author(s):  
Can Ozan Tan ◽  
Yu-Chieh Tzeng ◽  
Jason W. Hamner ◽  
Renaud Tamisier ◽  
J. Andrew Taylor

Resting vascular sympathetic outflow is significantly increased during and beyond exposure to acute hypoxia without a parallel increase in either resistance or pressure. This uncoupling may indicate a reduction in the ability of sympathetic outflow to effect vascular responses (sympathetic transduction). However, the effect of hypoxia on sympathetic transduction has not been explored. We hypothesized that transduction would either remain unchanged or be reduced by isocapnic hypoxia. In 11 young healthy individuals, we measured beat-by-beat pressure, multiunit sympathetic nerve activity, and popliteal blood flow velocity at rest and during isometric handgrip exercise to fatigue, before and during isocapnic hypoxia (∼80% SpO2), and derived sympathetic transduction for each subject via a transfer function that reflects Poiseuille's law of flow. During hypoxia, heart rate and sympathetic nerve activity increased, whereas pressure and flow remained unchanged. Both normoxic and hypoxic exercise elicited significant increases in heart rate, pressure, and sympathetic activity, although sympathetic responses to hypoxic exercise were blunted. Hypoxia slightly increased the gain relation between pressure and flow (0.062 ± 0.006 vs. 0.074 ± 0.004 cm·s−1·mmHg−1; P = 0.04), but markedly increased sympathetic transduction (−0.024 ± 0.005 vs. −0.042 ± 0.007 cm·s−1·spike−1; P < 0.01). The pressor response to isometric handgrip was similar during normoxic and hypoxic exercise due to the balance of interactions among the tachycardia, sympathoexcitation, and transduction. This indicates that the ability of sympathetic activity to affect vasoconstriction is enhanced during brief exposure to isocapnic hypoxia, and this appears to offset the potent vasodilatory stimulus of hypoxia.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Jian Cui ◽  
Matthew D Muller ◽  
Allen R Kunselman ◽  
Cheryl Blaha ◽  
Lawrence I Sinoway

Epidemiological data suggest that blood pressure tends to be higher in winter and lower in summer, particularly in the elderly. Moreover, hospitalization and mortality rates due to cardiovascular disease have higher rates in winter than summer. Whether autonomic adjustment including muscle sympathetic nerve activity (MSNA) varies with season is unclear. To test the hypothesis that resting MSNA varies along the seasons, we retrospectively analyzed the supine baseline (6 min) MSNA and heart rate (from ECG) of 57 healthy subjects (33M, 24F, 29 ± 1 yrs, range 22-64 yrs) from studies in our laboratory (room temperature ~23 °C). Each of these subjects from central Pennsylvania was studied during 2 or more seasons (total 231 visits). A linear-mixed effects model, which is an extension of the analysis of variance model accounting for repeated measurements (i.e. season) per subject, was used to assess the association of season with the cardiovascular outcomes. The Tukey-Kramer procedure was used to account for multiple comparisons testing between the seasons. MSNA burst rate in winter (21.3 ± 1.0 burst/min) was significantly greater than in summer (13.7 ± 1.0 burst/min, P < 0.001), spring (17.5 ± 1.6 burst/min, P = 0.04) and fall (17.0 ± 1.2 burst/min, P < 0.002). There was no significant difference in MSNA in other comparisons (spring vs. summer, P = 0.12; spring vs. fall, P = 0.99; summer vs. fall, P = 0.054). Heart rate (63.6 ± 1.1 vs. 60.8 ± 1.2 beats/min, P = 0.048) was significantly greater in winter compared to summer. Blood pressure (automated sphygmomanometry of the brachial artery) was not significantly different between seasons. The results suggest that baseline sympathetic nerve activity varies along the seasons, with peak levels evident in winter. We speculate that the seasonal MSNA variation may contribute to seasonal variations in cardiovascular morbidity and mortality.


2005 ◽  
Vol 98 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Renaud Tamisier ◽  
Amit Anand ◽  
Luz M. Nieto ◽  
David Cunnington ◽  
J. Woodrow Weiss

Sustained and episodic hypoxic exposures lead, by two different mechanisms, to an increase in ventilation after the exposure is terminated. Our aim was to investigate whether the pattern of hypoxia, cyclic or sustained, influences sympathetic activity and hemodynamics in the postexposure period. We measured sympathetic activity (peroneal microneurography), hemodynamics [plethysmographic forearm blood flow (FBF), arterial pressure, heart rate], and peripheral chemosensitivity in normal volunteers on two occasions during and after 2 h of either exposure. By design, mean arterial oxygen saturation was lower during sustained relative to cyclic hypoxia. Baseline to recovery muscle sympathetic nerve activity and blood pressure went from 15.7 ± 1.2 to 22.6 ± 1.9 bursts/min ( P < 0.01) and from 85.6 ± 3.2 to 96.1 ± 3.3 mmHg ( P < 0.05) after sustained hypoxia, respectively, but did not exhibit significant change from 13.6 ± 1.5 to 17.3 ± 2.5 bursts/min and 84.9 ± 2.8 to 89.8 ± 2.5 mmHg after cyclic hypoxia. A significant increase in FBF occurred after sustained, but not cyclic, hypoxia, from 2.3 ± 0.2 to 3.29 ± 0.4 and from 2.2 ± 0.1 to 3.1 ± 0.5 ml·min−1·100 g of tissue−1, respectively. Neither exposure altered the ventilatory response to progressive isocapnic hypoxia. Two hours of sustained hypoxia increased not only muscle sympathetic nerve activity but also arterial blood pressure. In contrast, cyclic hypoxia produced slight but not significant changes in hemodynamics and sympathetic activity. These findings suggest the cardiovascular response to acute hypoxia may depend on the intensity, rather than the pattern, of the hypoxic exposure.


1994 ◽  
Vol 77 (1) ◽  
pp. 231-235 ◽  
Author(s):  
C. A. Ray ◽  
J. A. Pawelczyk

Previous studies suggested that endogenous opiates may attenuate the cardiovascular and sympathetic adjustments to static exercise. We tested whether this effect originates from exercising skeletal muscle. Eight men performed 2 min of static handgrip (30% maximum) followed by 2 min of posthandgrip muscle ischemia after three interventions: 1) control, 2) intra-arterial injection of naloxone HCl (60 micrograms) or vehicle (saline) in the exercising arm, and 3) systemic infusion of naloxone (4 mg) or vehicle. Naloxone and vehicle trials were performed double blind on separate days. Preexercise baseline muscle sympathetic nerve activity (burst frequency), heart rate, and blood pressure were similar across interventions on either day. During static handgrip, control, intra-arterial, and systemic administration of vehicle and naloxone elicited similar increases in total muscle sympathetic nerve activity (58 +/- 24 vs. 68 +/- 26, 146 +/- 49 vs. 132 +/- 42, 137 +/- 54 vs. 164 +/- 44%, respectively), heart rate (9 +/- 2 vs. 8 +/- 3, 16 +/- 3 vs. 16 +/- 2, 20 +/- 4 vs. 19 +/- 3 beats/min, respectively), and mean arterial pressure (22 +/- 4 vs. 21 +/- 4, 29 +/- 5 vs. 26 +/- 3, 28 +/- 4 vs. 27 +/- 4 mmHg, respectively). Additionally, there were no differences between vehicle and naloxone trials during posthandgrip muscle ischemia. Thus, contrary to previous reports, we conclude that the endogenous opiate peptide system does not modulate cardiovascular and sympathetic responses to brief periods of static exercise or muscle ischemia in humans.


2019 ◽  
Vol 317 (2) ◽  
pp. R280-R288 ◽  
Author(s):  
Jian Cui ◽  
Rachel C. Drew ◽  
Matthew D. Muller ◽  
Cheryl Blaha ◽  
Virginia Gonzalez ◽  
...  

Smoking is a risk factor for cardiovascular diseases. Prior reports showed a transient increase in blood pressure (BP) following a spontaneous burst of muscle sympathetic nerve activity (MSNA). We hypothesized that this pressor response would be accentuated in smokers. Using signal-averaging techniques, we examined the BP (Finometer) response to MSNA in 18 otherwise healthy smokers and 42 healthy nonsmokers during resting conditions. The sensitivities of baroreflex control of MSNA and heart rate were also assessed. The mean resting MSNA, heart rate, and mean arterial pressure (MAP) were higher in smokers than nonsmokers. The MAP increase following a burst of MSNA was significantly greater in smokers than nonsmokers (Δ3.4 ± 0.3 vs. Δ1.6 ± 0.1 mmHg, P < 0.001). The baroreflex sensitivity (BRS) of burst incidence, burst area, or total activity was not different between the two groups. However, cardiac BRS was lower in smokers than nonsmokers (14.6 ± 1.7 vs. 24.6 ± 1.5 ms/mmHg, P < 0.001). Moreover, the MAP increase following a burst was negatively correlated with the cardiac BRS. These observations suggest that habitual smoking in otherwise healthy individuals raises the MAP increase following spontaneous MSNA and that the attenuated cardiac BRS in the smokers was a contributing factor. We speculate that the accentuated pressor increase in response to spontaneous MSNA may contribute to the elevated resting BP in the smokers.


Sign in / Sign up

Export Citation Format

Share Document