scholarly journals Finite Element analysis on the stress behavior of Steel Spring and Metal Matrix composite based leaf spring

Author(s):  
Harmeet Singh
Author(s):  
Ambuj Saxena ◽  
Shashi Prakash Dwivedi ◽  
Nagendra Kumar Maurya ◽  
Ashish Kumar Srivastava

The present study involved development of copper-based metal matrix composite, reinforced with waste EN 31 steel chips and TiB2 ceramic particles. Waste EN 31 steel chips and TiB2 ceramic particles were ball-milled for 100 h to obtain a single entity. The composite material was produced with a stir-casting technique, followed by a squeeze pressure process. The addition of Cu + 10 wt% of waste steel chips + 5 wt% of TiB2 improved the tensile strength of the copper matrix by about 68.35%. Furthermore, the addition of Cu + 5 wt% of waste steel chips + 10 wt% of TiB2 and Cu + 12.5 wt% of waste steel chips + 2.5 wt% of TiB2 increased the hardness and toughness of the copper matrix by about 133.33% and 28.57%, respectively. The addition of Cu + 10 wt% waste steel chips + 5 wt% of TiB2 ensured minimal corrosion weight loss in the metal matrix composite as a result of low porosity and a strong bond between the molecules. Further, representative volume element (size: 225 × 225 × 225 nm)-based finite element analysis was done to explain the micro-mechanical deformation, interfacial strength of matrix-particle interaction and damage behavior of Cu + 10 wt% of waste steel chips + 5 wt% of TiB2 metal matrix composite. A user material sub-routine model was also written and implemented with the help of FORTRAN subroutines to simulate the macro-mechanical tension test process of Cu + 10 wt% waste steel chips + 5 wt%TiB2 metal matrix composite. The results revealed a good agreement between the micro-mechanical and macro-mechanical finite element analysis models on the one hand and the experimental results on the other. Further, the representative volume element (with matrix and particles) showed about 59% and 66.5% higher tensile strength compared to the matrix–particle interface and the matrix (without particles), respectively. The percentage difference between the micro-mechanical finite element analysis and the experiments as well as the macro-mechanical finite element analysis and the experiments was found to be 5.58% and 9.64%, respectively. The finite element analysis results established that the waste steel chip powder particles exhibited greater stress than the TiB2 powder particles.


2018 ◽  
Vol 775 ◽  
pp. 493-498 ◽  
Author(s):  
Azlan Ahmad ◽  
Mohd Amri Lajis ◽  
Shazarel Shamsudin ◽  
Nur Kamilah Yusuf

This study proposes of harmonizing the original approach of aluminium alloy recycling through hot press forging. By eradicating the melting phase, most of the waste generation can be significantly reduced. To cope with the technology revolution, the finite element is utilised to predict the material behaviour without practically executing the trial. By employing three-dimensional finite element analysis through DEFORM 3D, the evaluations were demonstrated by simulating the isothermal forging process. The flow stress of the material was modified to adequate with the aluminium-based metal matrix composite used in the actual experiment. To that extent, this study found out that the strain of the workpiece had gradually increased on each step. A reduction of ~10% of the flesh observed in the simulation is roughly the same as existed on the experiment workpiece. Above all, the simulation conducted abides by the standard and follows the actual practice that has been done previously. Through the finite element utilization, this study discussed the performance of the recycled based composite. The result presented here may facilitate improvement in the recycling issue and also conserved the environment for the better future.


2017 ◽  
Vol 867 ◽  
pp. 228-232 ◽  
Author(s):  
B. Nandish ◽  
K.P. Muthanna ◽  
M.B. Kaveriappa

Connecting Rod is a link between Piston and Crank. It is meant to transfer combustion forces from the Piston to Crank. In the present work an Aluminium based metal matrix composite is proposed as a material for Connecting Rod. Composition of the proposed material is Aluminium 6061-9%Silicon carbide-15% fly ash. Model of a Connecting Rod is designed and stress analysis is done using Finite Element Analysis. Proposed material is compared with an existing Connecting Rod material Aluminium-360. Parameters like von-misses stress, von-misses strain, deformation, factor of safety and weight reduction were calculated. From the comparison proposed material is found to be 26.11 % lesser weight, more stiffer by 7.21 %, shows improved factor of safety and can sustain higher stress.


Sign in / Sign up

Export Citation Format

Share Document