scholarly journals Differential protein expression during growth on model and commercial mixtures of naphthenic acids in Pseudomonas fluorescens Pf-5

Author(s):  
Boyd McKew ◽  
Richard Johnson ◽  
Lindsey Clothier ◽  
Karl Skeels ◽  
Matthew Ross ◽  
...  

Naphthenic acids (NAs) are carboxylic acids with the formula (CnH2n+ZO2) and are the toxic, persistent constituents of oil sands process-affected waters (OSPW), produced during oil sands extraction. Currently, the proteins and mechanisms involved in NA biodegradation are unknown. Using LC-MS/MS shotgun proteomics, we identified proteins overexpressed during the growth of Pseudomonas fluorescens Pf5 on a model NA (4-n-butylphenyl)-4-butanoic acid (n-BPBA) and commercial NA mixture (Acros). By day 11, >95% of n-BPBA was degraded. With Acros, a 17% reduction in intensity occurred with 10-18 carbon compounds of the Z family -2 to -14 (major NA species in this mixture). A total of 554 proteins (n-BPBA) and 631 proteins (Acros) were overexpressed during growth on NAs; including several transporters (e.g. ABC transporters), suggesting a cellular protective response from NA toxicity. Several proteins associated with fatty acid, lipid and amino acid metabolism were also overexpressed; including acyl-CoA dehydrogenase and acyl-CoA thioesterase II, which catalyze part of the fatty acid beta-oxidation pathway. Indeed, multiple enzymes involved in the fatty acid oxidation pathway were upregulated. Given the presumed structural similarity between alkyl-carboxylic acid side chains and fatty acids, we postulate that P. fluorescens Pf-5 was using existing fatty acid catabolic pathways (among others) during NA degradation.

2021 ◽  
Vol 1 (19) ◽  
pp. 268-269
Author(s):  
A.Yu. Skorokhodova ◽  
V.G. Debabov

The feasibility of the application of enforced ATP hydrolysis to ensure anaerobic functioning of Escherichia coli strain producing butyric acid through the inverted fatty acid beta-oxidation pathway as a full-cell biocatalyst has been demonstrated.


Author(s):  
A. Skorokhodova ◽  
V. Debabov

The feasibility of the biosynthesis from glucose of 3-hydroxyfunctionalized C4-C8 carboxylates upon the reversal of the fatty acid beta-oxidation in recombinant Escherichia coli strains has been demonstrated.


1981 ◽  
Vol 196 (3) ◽  
pp. 803-809 ◽  
Author(s):  
F Bauché ◽  
D Sabourault ◽  
Y Giudicelli ◽  
J Nordmann ◽  
R Nordmann

To elucidate the mechanisms through which 2-mercaptoacetate administration inhibits fatty acid oxidation in the liver, the respiration rates induced by different substrates were studied polarographically in rat hepatic mitochondria isolated 3 h after 2-mercaptoacetate administration. Palmitoyl-L-carnitine oxidation was almost completely inhibited in either the absence or presence of malonate. Octanoate oxidation was also inhibited, and the intramitochondrial acyl-CoA content was markedly increased. The oxidation rate of pyruvate and 2-oxoglutarate on the one hand and of 3-hydroxybutyrate, succinate and glutamate on the other was either normal or only slightly decreased. In the presence of 2,4-dinitrophenol, the extent of the inhibition of palmitoyl-L-carnitine oxidation was unchanged. All these results are consistent with the hypothesis that the 2-mercaptoacetate inhibition of fatty acid oxidation is due to an inhibition of the beta-oxidation pathway itself. Finally, the mitochondrial defect responsible for this inhibition was shown to be an inhibition of palmitoyl-CoA dehydrogenase activity (EC 1.3.99.3).


2020 ◽  
Vol 56 (20) ◽  
pp. 3023-3026
Author(s):  
Shohei Uchinomiya ◽  
Naoya Matsunaga ◽  
Koichiro Kamoda ◽  
Ryosuke Kawagoe ◽  
Akito Tsuruta ◽  
...  

Fluorescence imaging of fatty acid beta oxidation (FAO) with a fluorescent probe metabolically degraded by sequential enzyme reactions of FAO.


2009 ◽  
Vol 19 (5) ◽  
pp. 540-542 ◽  
Author(s):  
Narendra R. Dereddy ◽  
David Kronn ◽  
Usha Krishnan

AbstractInborn errors of fatty acid metabolism are important causes of reversible cardiomyopathy in infancy. Disorders in long chain fatty acid oxidation can lead to cardiomyopathy, as fatty acid beta oxidation is the major source of myocardial energy after birth. We present 2 cases of such disorders with cardiac manifestations during infancy, which responded well to a diet low in long chain fatty acids.


2019 ◽  
Vol 35 (5) ◽  
pp. 12-19
Author(s):  
A.Yu. Skorokhodova ◽  
V.G. Debabov

A possible contribution of collateral enzymes to the formation of key precursor metabolite, 3-hydroxybutyryl-CoA, in a recombinant Escherichia coli strain engineered for 1,3-butanediol biosynthesis from glucose through the inverted fatty acid beta-oxidation pathway has been evaluated. The inactivation of the 3-hydroxyadipyl-CoA dehydrogenase gene, paaH, did not prevent the 1,3-butanol biosynthesis during anaerobic glucose utilization by the strain with the intact essential gene fabG coding for 3-ketoacyl-ACP reductase, which can catalyze the conversion of acetoacetyl-CoA to (R)-3-hydroxybutyryl-CoA. The subsequent inactivation in the strain of fadB gene coding for (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase of the fatty acid beta-oxidation led to the abolishment of the 1,3-butanediol synthesis. The respective diol was also not found among the products secreted by the strain possessing the intact fabG and paaH genes upon an individual deletion of fadB gene. It was established that the collateral enzymes did not participate in the formation of 3-hydroxybutyryl-CoA in the studied strains and the respective CoA-derivative was synthesized solely by the (S)-specific enzyme of the fatty acid beta-oxidation pathway. The obtained results indicate that the reversal of the fatty acid beta-oxidation pathway can ensure the enantioselective biosynthesis of the (S)-stereoisomer of 1,3-butanediol in engineered E. coli strains. 1,3-butanediol, fatty acid beta-oxidation, Escherichia coli, glucose, metabolic engineering, stereoisomer. The work was carried out with financial support Russian Foundation for Fundamental Research (No. 18-29-08059).


Sign in / Sign up

Export Citation Format

Share Document