aliphatic carboxylic acid
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tafadzwa Mkungunugwa ◽  
Shepherd Manhokwe ◽  
Armistice Chawafambira ◽  
Munyaradzi Shumba

Globally, a ninth of people use polluted water sources because an estimated 300–400 Mt of waste and 90% of sewage are discharged into water bodies from industries and developing countries, respectively. The utilisation of indigenous fruit pits in producing novel adsorbents will greatly benefit in wastewater treatment. In most underdeveloped countries, activated carbon (AC) is imported at a high cost. The study was aimed at synthesising and characterisation of AC obtained from Marula nutshell. Carbonization of organic matter from Marula nutshell was carried out at 200°C, 400°C, 500°C, and 600°C. Sulphuric (H2SO4) and phosphoric (H3PO4) acids were used as activating agents at concentrations of 20–60% ( v / v ). Physicochemical characteristics of the AC, such as bulk density, moisture, ash, pH, and iodine number, were analyzed using standard methods. Functional groups and total carbon content were determined using the FTIR spectroscopy and Nitrogen Carbon Sulphur (NCS) analyzer, respectively. The values of carbon yield and total carbon in activated samples with H2SO4 and H3PO4 were 32.2–93.2%, 26.9–95.8%, and 46–79%, 20.8–69.8%, respectively. The pH, ash, moisture, and bulk density of activated high carbon samples with H2SO4 ranged from 2.4–6.1, 0.65–3.49%, 1.3–8.4%, and 0.42–0.62 gcm−3, respectively. Activated high carbon samples with H3PO4 had 2.7–3.2, 11.3–29.8%, 4.7–14.6%, and 0.39–0.54 gcm−3 pH, ash, moisture, and bulk density, respectively. The synthesised AC samples with 40% H3PO4 at 500°C had the highest iodine value of 1075.7 mg/g. FTIR results showed the presence of aliphatic carboxylic acid salt, inorganic nitrate (NO3−), and phosphate groups in the synthesised AC and were not significantly different ( p < 0.05 ) from commercial AC. The untreated Marula nutshell had some aliphatic hydrocarbon (alkanes), inorganic phosphate ( PO 4 3 − ), aliphatic ester (–COO), and aliphatic carboxylic acid salt (–C(=O)O–) groups. A novel adsorbent, AC was produced from Marula nutshell with the potential to be used in water treatment.


2021 ◽  
Author(s):  
Zheng Wang ◽  
Yajun Wang ◽  
Qianjie Xie ◽  
Zhiying Fan ◽  
Yehua Shen

The coupling of CO2 and epoxide is promising way to reduce atmospheric carbon by converting it into value-added cyclic carbonate. Pursuing efficient catalysts is highly attractive for the title reaction....


2020 ◽  
Vol 8 (9) ◽  
pp. 1353 ◽  
Author(s):  
Afra Khiralla ◽  
Rosella Spina ◽  
Mihayl Varbanov ◽  
Stéphanie Philippot ◽  
Pascal Lemiere ◽  
...  

An endophytic fungus isolated from Vernonia amygdalina, a medicinal plant from Sudan, was taxonomically characterized as Curvularia papendorfii. Ethyl acetate crude extract of C. papendorfii revealed an important antiviral effect against two viral pathogens, the human coronavirus HCoV 229E and a norovirus surrogate, the feline coronavirus FCV F9. For the last one, 40% of the reduction of the virus-induced cytopathogenic effect at lower multiplicity of infection (MOI) 0.0001 was observed. Selective antibacterial activity was obtained against Staphylococcus sp. (312 µg/mL), and interesting antiproliferative activity with half maximal inhibitory concentration (IC50) value of 21.5 ± 5.9 µg/mL was observed against human breast carcinoma MCF7 cell line. Therefore, C. papendorfii crude extract was further investigated and fractionated. Twenty-two metabolites were identified by gas chromatography coupled to mass spectrometry (GC–MS), and two pure compounds, mannitol and a new polyhydroxyacid, called kheiric acid, were characterized. A combination of spectroscopic methods was used to elucidate the structure of the new aliphatic carboxylic acid: kheiric acid (3,7,11,15-tetrahydroxy-18-hydroxymethyl-14,16,20,22,24-pentamethyl-hexacosa-4E,8E,12E,16,18-pentaenoic acid). Kheiric acid showed an interesting result with a minimum inhibitory concentration (MIC) value of 62.5 µg/mL against meticillin-resistant Staphylococcus aureus (MRSA). Hence, endophytes associated with medicinal plants from Sudan merit more attention, as they could be a treasure of new bioactive compounds.


2020 ◽  
Author(s):  
Min-Chen Fu ◽  
Jia-Xin Wang ◽  
Rui Shang

Abstract Photoactivation of an electron donor–acceptor encounter complex in an organic solvent cage, a phenomenon that has been described in Mulliken theory, has been known for decades, but it has not been employed as a photoactivation step in the design of photocatalysis for organic synthesis until recent years. We report herein an iododecarboxylation reaction that applies this concept for photoactivation by using a catalyst to facilitate electron transfer and to suppress back electron transfer in the photoexcited state. Under irradiation of 456 nm blue light-emitting diodes, PPh3 catalyzes the iododecarboxylation of aliphatic carboxylic acid-derived N-(acyloxy)phthalimide with lithium iodide as iodine source. The reaction delivers primary, secondary, and bridgehead tertiary alkyl iodides in acetone solvent, and the alkyl iodide products were easily used to generate C–N, C–O, C–F, and C–S bonds to allow various decarboxylative transformations without using transition-metal or organic dye-based photocatalysts. This protocol is applicable to redox-active esters derived from various natural products and pharmaceuticals.


Author(s):  
A. Skorokhodova ◽  
V. Debabov

The feasibility of the biosynthesis from glucose of 3-hydroxyfunctionalized C4-C8 carboxylates upon the reversal of the fatty acid beta-oxidation in recombinant Escherichia coli strains has been demonstrated.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 72
Author(s):  
Yang Xiang ◽  
Yue-Juan Zhang ◽  
Ying Ge ◽  
Yajun Zhou ◽  
Cheng Chen ◽  
...  

Inhibition of β-lactamases presents a promising strategy to restore the β-lactams antibacterial activity to resistant bacteria. In this work, we found that aromatic carboxyl substituted 2-triazolylthioacetamides 1a–j inhibited VIM-2, exhibiting an IC50 value in the range of 20.6–58.6 μM. The structure-activity relationship study revealed that replacing the aliphatic carboxylic acid with aromatic carboxyl improved the inhibitory activity of 2-triazolylthioacetamides against VIM-2. 1a–j (16 mg/mL) restored the antibacterial activity of cefazolin against E. coli cell expressing VIM-2, resulting in a 4–8-fold reduction in MICs. The isothermal titration calorimetry (ITC) characterization suggested that the primary binding 2-triazolylthioacetamide (1b, 1c, or 1h) to VIM-2 was a combination of entropy and enthalpy contributions. Further, the crystal structure of VIM-2 in complex with 1b was obtained by co-crystallization with a hanging-drop vapour-diffusion method. The crystal structure analysis revealed that 1b bound to two Zn(II) ions of the enzyme active sites, formed H-bound with Asn233 and structure water molecule, and interacted with the hydrophobic pocket of enzyme activity center utilizing hydrophobic moieties; especially for the phenyl of aromatic carboxyl which formed π-π stacking with active residue His263. These studies confirmed that aromatic carboxyl substituted 2-triazolylthioacetamides are the potent VIM-2 inhibitors scaffold and provided help to further optimize 2-triazolylthioacetamides as VIM-2 even or broad-spectrum MβLs inhibitors.


Sign in / Sign up

Export Citation Format

Share Document