scholarly journals Sector stability criteria for a nonlinear axial motion string system

Author(s):  
Rui Wu ◽  
Yi Cheng ◽  
Donal O'Regan

The paper investigates the exponential stability criterion for an axially moving string system driven by a nonlinear partial differential equation with nonlinear boundary feedback.The control criterion based on a sector condition contains a large class of nonlinearities, which is a negative feedback of the velocity at the right boundary of the moving string. By invoking nonlinear semigroup theory, the well-posedness result of the closed-loop system is verified under the sector criteria. Furthermore, a novel energy like function is constructed to establish the exponential stability of the closed-loop system by using a integral-type multiplier method and the generalized Gronwall-type integral inequality.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yi Cheng ◽  
Zhihui Dong ◽  
Donal O' Regan

<p style='text-indent:20px;'>This paper examines the stabilization problem of the axially moving Kirchhoff beam. Under the nonlinear damping criterion established by the slope-restricted condition, the existence and uniqueness of solutions of the closed-loop system equipped with nonlinear time-delay disturbance at the boundary is investigated via the Faedo-Galerkin approximation method. Furthermore, the solution is continuously dependent on initial conditions. Then the exponential stability of the closed-loop system is established by the direct Lyapunov method, where a novel energy function is constructed.</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Xue-Lian Jin ◽  
Yang Zhang ◽  
Fu Zheng ◽  
Bao-zhu Guo

The exponential stability of the monotubular heat exchanger equation with boundary observation possessing a time delay and inner control was investigated. Firstly, the close-loop system was translated into an abstract Cauchy problem in the suitable state space. A uniformly bounded C0-semigroup generated by the close-loop system, which implies that the unique solution of the system exists, was shown. Secondly, the spectrum configuration of the closed-loop system was analyzed and the eventual differentiability and the eventual compactness of the semigroup were shown by the resolvent estimates on some resolvent sets. This implies that the spectrum-determined growth assumption holds. Finally, a sufficient condition, which is related to the physical parameters in the system and is independent of the time delay, of the exponential stability of the closed-loop system was given.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Boumediène Chentouf ◽  
Nejib Smaoui

This paper is concerned with the feedback flow control of an open-channel hydraulic system modeled by a diffusive wave equation with delay. Firstly, we put forward a feedback flow control subject to the action of a constant time delay. Thereafter, we invoke semigroup theory to substantiate that the closed-loop system has a unique solution in an energy space. Subsequently, we deal with the eigenvalue problem of the system. More importantly, exponential decay of solutions of the closed-loop system is derived provided that the feedback gain of the control is bounded. Finally, the theoretical findings are validated via a set of numerical results.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 834
Author(s):  
Qing-Qing Hu ◽  
Feng-Fei Jin ◽  
Bao-Qiang Yan

In this paper, we consider boundary stabilization problem of heat equation with multi-point heat source. Firstly, a state feedback controller is designed mainly by backstepping approach. Under the designed state controller, the exponential stability of closed-loop system is guaranteed. Then, an observer-based output feedback controller is proposed. We prove the exponential stability of resulting closed-loop system using operator semigroup theory. Finally, the designed state and output feedback controllers are effective via some numerical simulations.


Author(s):  
Alexander Voevoda ◽  
◽  
Vladislav Filiushov ◽  

The application of advanced synthesis methods is due to the increasing complexity of control objects. Relatively simple objects are represented as a single-channel system or as a combination of such systems and are calculated separately. More complex systems must be viewed as multi-input and multi-output systems. There are several approaches to this. Within the framework of this paper we will consider the synthesis of a system presented in the form of a polynomial matrix decomposition. It allows us to write a closed loop system in such a way that, by analogy with single-channel systems, it is possible to single out the "numerator" and "denominator" not only of the object and the controller, but of the entire system. For multichannel objects, they will be written in a matrix form allowing you to select the characteristic matrix whose determinant is the characteristic polynomial. In this paper, an emphasis is placed on the derivation of four variants of the polynomial matrix description (PMD) of a closed system. Such a variety of representation of a closed-loop system follows from the equivalent writing of the transfer matrix in the form of left and right PMD of an object or controller. Of the four options for recording the system, two options – left and right – for the characteristic matrix are distinguished. When they are reduced to a diagonal form, the elements on the main diagonal contain the poles of a closed system along the corresponding channel. From the example given at the end of the paper, it can be seen that it is more convenient to use the left characteristic matrix because it has a lower dimension for a non-square object (the number of input and output quantities is not equal), with the number of input actions exceeding the number of output quantities, The right characteristic matrix can also be used to synthesize such a control object, but the resulting solution is more complicated and not obvious. The situation is reversed if we consider an object with fewer inputs than outputs. In this case, the right characteristic matrix will be smaller and more suitable for synthesis. It follows from this that the procedure for synthesizing a control system for non-square objects differs depending on the number of inputs and outputs.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ahmat Mahamat Taboye ◽  
Mohamed Laabissi

<p style='text-indent:20px;'>This article deals with the issue of the exponential stability of a linear Korteweg-de Vries equation with input saturation. It is proved that the system is well-posed and the origin is exponentially stable for the closed loop system, by using the classical argument used in this kind of problems.</p>


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1376-P
Author(s):  
GREGORY P. FORLENZA ◽  
BRUCE BUCKINGHAM ◽  
JENNIFER SHERR ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1066-P
Author(s):  
HALIS K. AKTURK ◽  
DOMINIQUE A. GIORDANO ◽  
HAL JOSEPH ◽  
SATISH K. GARG ◽  
JANET K. SNELL-BERGEON

Sign in / Sign up

Export Citation Format

Share Document