scholarly journals Expanding the conservation genomics toolbox: incorporating structural variants to enhance genomic studies for species of conservation concern

Author(s):  
Jana Wold ◽  
Stephanie Galla ◽  
Anna Santure ◽  
David Eccles ◽  
Carolyn J. Hogg ◽  
...  

Structural variants (SVs) are large rearrangements (> 50 bp) within the genome that impact the form and structure of chromosomes. As a result, SVs are a significant source of functional genomic diversity, i.e. variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic diversity in threatened species via single nucleotide polymorphism (SNP) datasets, SVs remain understudied despite their potential influence on complex traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We identify three critical resources to characterize SVs de novo: 1) High-quality, contiguous, annotated reference genome(s); 2) Whole genome resequence data from representative individuals of the target species/populations; and 3) Well-curated metadata including pedigrees. We also leverage the existing literature–predominantly in human health, agriculture and eco-evol biology–to identify pangenomic approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we intensively manage some of the world’s most threatened species.

Author(s):  
Jana Wold ◽  
Stephanie Galla ◽  
Anna Santure ◽  
David Eccles ◽  
Carolyn J. Hogg ◽  
...  

Structural variants (SVs) are large rearrangements (> 50 bp) within the genome that impact the form and structure of chromosomes. As a result, SVs are a significant source of functional genomic diversity, i.e. variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic diversity in threatened species via single nucleotide polymorphism (SNP) datasets, SVs remain understudied despite their potential influence on complex traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We identify three critical resources to characterize SVs de novo: 1) High-quality, contiguous, annotated reference genome(s); 2) Whole genome resequence data from representative individuals of the target species/populations; and 3) Well-curated metadata including pedigrees. We also leverage the existing literature–predominantly in human health, agriculture and eco-evol biology–to identify pangenomic approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we intensively manage some of the world’s most threatened species.


Author(s):  
Jana Wold ◽  
Klaus-Peter Koepfli ◽  
Stephanie Galla ◽  
Carolyn J. Hogg ◽  
David Eccles ◽  
...  

Structural variants (SVs) are large rearrangements (> 50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, i.e. variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) datasets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature–predominantly in human health, agriculture and eco-evolutionary biology–to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world’s most threatened species.


Author(s):  
Jana Wold ◽  
Stephanie Galla ◽  
David Eccles ◽  
Carolyn J. Hogg ◽  
Klaus-Peter Koepfli ◽  
...  

Increased capability in the conservation genomics community, combined with decreased sequencing costs, is providing new opportunities for the application of whole-genome sequence data to enhance species recovery. Indeed, assessments of genome-wide diversity based on SNP data are already informing the conservation management of threatened species around the world. However, SNP data alone may not sufficiently capture all of the information necessary for the effective conservation management of critically endangered species that suffer from severe inbreeding depression. For threatened species that require significant intervention, it is critical that we as conservation genomicists expand our repertoire to include assessments of functional diversity. Structural variants are a likely source of functional diversity, as their frequency and genomic context affect the dosage and regulation of gene expression through mechanisms that alter genome organization and impact fitness. In this future-focused Opinion, we leverage the existing literature - predominantly focused on model and agricultural species - to identify pan-genomic and chromosomic approaches for readily characterizing structural variants and to consider how integrating these into the conservation genomics toolbox will transform the way we manage some of the world’s most threatened species.


2017 ◽  
Author(s):  
Michael J. Meyer ◽  
Juan Felipe Beltrán ◽  
Siqi Liang ◽  
Robert Fragoza ◽  
Aaron Rumack ◽  
...  

ABSTRACTProtein interactions underlie nearly all known cellular function, making knowledge of their binding conformations paramount to understanding the physical workings of the cell. Studying binding conformations has allowed scientists to explore some of the mechanistic underpinnings of disease caused by disruption of protein interactions. However, since experimentally determined interaction structures are only available for a small fraction of the known interactome such inquiry has largely excluded functional genomic studies of the human interactome and broad observations of the inner workings of disease. Here we present Interactome INSIDER, an information center for genomic studies using the first full-interactome map of human interaction interfaces. We applied a new, unified framework to predict protein interaction interfaces for 184,605 protein interactions with previously unresolved interfaces in human and 7 model organisms, including the entire experimentally determined human binary interactome. We find that predicted interfaces share several known functional properties of interfaces, including an enrichment for disease mutations and recurrent cancer mutations, suggesting their applicability to functional genomic studies. We also performed 2,164 de novo mutagenesis experiments and show that mutations of predicted interface residues disrupt interactions at a similar rate to known interface residues and at a much higher rate than mutations outside of predicted interfaces. To spur functional genomic studies in the human interactome, Interactome INSIDER (http://interactomeinsider.yulab.org) allows users to explore known population variants, disease mutations, and somatic cancer mutations, or upload their own set of mutations to find enrichment at the level of protein domains, residues, and 3D atomic clustering in known and predicted interaction interfaces.


Author(s):  
Jana Wold ◽  
Stephanie Galla ◽  
David Eccles ◽  
Carolyn J. Hogg ◽  
Klaus-Peter Koepfli ◽  
...  

Increased capability in the conservation genomics community, combined with decreased sequencing costs, is providing new opportunities for the application of whole-genome sequence data to enhance species recovery. Indeed, assessments of genome-wide diversity based on SNP data are already informing the conservation management of threatened species around the world. However, SNP data alone may not sufficiently capture all of the information necessary for the effective conservation management of critically endangered species that suffer from severe inbreeding depression. For threatened species that require significant intervention, it is critical that we as conservation genomicists expand our repertoire to include assessments of functional diversity. Structural variants are a likely source of functional diversity, as their frequency and genomic context affect the dosage and regulation of gene expression through mechanisms that alter genome organization and impact fitness. In this future-focused Opinion, we leverage the existing literature - predominantly focused on model and agricultural species - to identify pan-genomic and chromosomic approaches for readily characterizing structural variants and to consider how integrating these into the conservation genomics toolbox will transform the way we manage some of the world’s most threatened species.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 904
Author(s):  
Saif ur Rehman ◽  
Faiz-ul Hassan ◽  
Xier Luo ◽  
Zhipeng Li ◽  
Qingyou Liu

The buffalo was domesticated around 3000–6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Surajit Bhattacharya ◽  
Hayk Barseghyan ◽  
Emmanuèle C. Délot ◽  
Eric Vilain

Abstract Background Whole genome sequencing is effective at identification of small variants, but because it is based on short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-based SV annotation software has seen little development, and currently available SV annotation tools do not provide sufficient information for determination of variant pathogenicity. Results We developed an R-based package, nanotatoR, which provides comprehensive annotation as a tool for SV classification. nanotatoR uses both external (DGV; DECIPHER; Bionano Genomics BNDB) and internal (user-defined) databases to estimate SV frequency. Human genome reference GRCh37/38-based BED files are used to annotate SVs with overlapping, upstream, and downstream genes. Overlap percentages and distances for nearest genes are calculated and can be used for filtration. A primary gene list is extracted from public databases based on the patient’s phenotype and used to filter genes overlapping SVs, providing the analyst with an easy way to prioritize variants. If available, expression of overlapping or nearby genes of interest is extracted (e.g. from an RNA-Seq dataset, allowing the user to assess the effects of SVs on the transcriptome). Most quality-control filtration parameters are customizable by the user. The output is given in an Excel file format, subdivided into multiple sheets based on SV type and inheritance pattern (INDELs, inversions, translocations, de novo, etc.). nanotatoR passed all quality and run time criteria of Bioconductor, where it was accepted in the April 2019 release. We evaluated nanotatoR’s annotation capabilities using publicly available reference datasets: the singleton sample NA12878, mapped with two types of enzyme labeling, and the NA24143 trio. nanotatoR was also able to accurately filter the known pathogenic variants in a cohort of patients with Duchenne Muscular Dystrophy for which we had previously demonstrated the diagnostic ability of OGM. Conclusions The extensive annotation enables users to rapidly identify potential pathogenic SVs, a critical step toward use of OGM in the clinical setting.


Author(s):  
Mingjie Lyu ◽  
Huafeng Liu ◽  
Joram Kiriga Waititu ◽  
Ying Sun ◽  
Huan Wang ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Daniel Stribling ◽  
Peter L. Chang ◽  
Justin E. Dalton ◽  
Christopher A. Conow ◽  
Malcolm Rosenthal ◽  
...  

Abstract Objectives Arachnids have fascinating and unique biology, particularly for questions on sex differences and behavior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a significant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description To examine sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The raw data consist of sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and differential expression analyses. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from publicly-available databases.


Sign in / Sign up

Export Citation Format

Share Document