scholarly journals Analytical representations of the Residence Time Distribution (RTD) associated with Hyporheic Exchange beneath Dune-like bedforms at different sediment bed depths

Author(s):  
Ahmed Monofy ◽  
Fulvio Boano ◽  
Stanley Grant

The hyporheic exchange below dune-shaped bedforms has a great impact on the stream environment. One of the most important properties of the hyporheic zone is the residence time distribution (RTD) of flow paths in the sediment domain. Here we evaluate the influence of an impervious layer, at a dimensionless sediment depth of d_b^*=(2πd_b)⁄λ where λ is the dune wavelength, on the form of the hyporheic exchange RTD. Empirical RTDs were generated, over a range of d_b^(* ) values, from numerical particle tracking experiments in which 10000 particles sinusoidally distributed over a flatbed domain were released. These empirical RTDs are best represented by the Gamma, Log-Normal and Fréchet distributions over normalized bed depth of 〖0 <=d〗_b^(* )≤1.2, 〖1.23.1, respectively. The depth dependence of the analytical distribution parameters is also presented, together with a set of regression formulae to predict these parameters based on d_b^(* )with a high degree of accuracy (R^2>99.8%). These results contribute to our understanding of the physical and mixing processes underpinning hyporheic exchange in streams and allow for a quick evaluation of its likely impact on nutrient and contaminant processing (e.g., based on the magnitude of the Damköhler number).

Author(s):  
Ahmed Monofy ◽  
Fulvio Boano ◽  
Stanley Grant

The hyporheic exchange below dune-shaped bedforms has a great impact on the stream environment. One of the most important properties of the hyporheic zone is the residence time distribution (RTD) of flow paths in the sediment domain. Here we evaluate the influence of an impervious layer, at a dimensionless sediment depth of db*=2πdbλ where λ is the dune wavelength, on the form of the hyporheic exchange RTD. Empirical RTDs were generated, over a range of db*values, from numerical particle tracking experiments in which 10000 particles sinusoidally distributed over a flatbed domain were released. These empirical RTDs are best represented by the Gamma, Log-Normal and Fréchet distributions over normalized bed depth of 0<=db*≤1.2,1.2<db*≤3.1, and db*>3.1, respectively. The depth dependence of the analytical distribution parameters is also presented, together with a set of regression formulae to predict these parameters based on db*with a high degree of accuracy (R2>99.8%). These results contribute to our understanding of the physical and mixing processes underpinning hyporheic exchange in streams and allow for a quick evaluation of its likely impact on nutrient and contaminant processing (e.g., based on the magnitude of the Damköhler number). Keywords: Dunes, bedforms, residence times distribution, sediment depth effect, Hyporheic residence times, analytical representation, two parametric distributions, Damköhler Number.


2016 ◽  
Vol 18 (1) ◽  
pp. 23 ◽  
Author(s):  
Rajamanickam Akila ◽  
Kumar Balu

<p>A regression model for simulating residence time distribution (RTD) of turbulent flows in helical static mixers is proposed and developed to predict the residence time distribution in static mixers. An efficient method is required to estimate the RTD and the sole means of achieving this is through detailed regression model. The RTD was calculated numerically by regression model. The results of the regression model, i.e. predicted RTD is presented in terms of different volumetric flow rate to illustrate the complicated flow patterns that drive the mixing process in helical static mixers. The regression model is found to fit the experimental RTD with a high degree of correlation.</p><p>Chemical Engineering Research Bulletin 18(2015) 23-29</p>


2021 ◽  
Vol 32 (2) ◽  
pp. 611-618
Author(s):  
Atena Dehghani Kiadehi ◽  
Mikel Leturia ◽  
Franco Otaola ◽  
Aissa Ould-Dris ◽  
Khashayar Saleh

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 430
Author(s):  
Changyou Ding ◽  
Hong Lei ◽  
Hong Niu ◽  
Han Zhang ◽  
Bin Yang ◽  
...  

The residence time distribution (RTD) curve is widely applied to describe the fluid flow in a tundish, different tracer mass concentrations and different tracer volumes give different residence time distribution curves for the same flow field. Thus, it is necessary to have a deep insight into the effects of the mass concentration and the volume of tracer solution on the residence time distribution curve. In order to describe the interaction between the tracer and the fluid, solute buoyancy is considered in the Navier–Stokes equation. Numerical results show that, with the increase of the mass concentration and the volume of the tracer, the shape of the residence time distribution curve changes from single flat peak to single sharp peak and then to double peaks. This change comes from the stratified flow of the tracer. Furthermore, the velocity difference number is introduced to demonstrate the importance of the density difference between the tracer and the fluid.


Sign in / Sign up

Export Citation Format

Share Document