scholarly journals Ameliorative Effects and Soil Carbon Sequestration Potential of Organic and In-Organic Amendments in Salt-Affected Soils in A Semi-Arid Region of Asia

Author(s):  
Zia Ur Rahman Farooqi ◽  
Mohd Sabir ◽  
Hamaad Raza Ahmad ◽  
Muhammad Arfan

Soil salinity is a big concern and main factor which limit crop productivity. Salt-affected soils can be reclaimed and used for crop production as well as atmospheric carbon sink. In this study, gypsum (G), organic amendments and their combinations were used to remediate marginally salt-affected soils and increasing carbon stocks in three areas (Dijkot, Uchkera and Jhang). Gypsum along with farmyard manure (FYM), poultry manure (PM) and green manure (GM) were used in this study. Except control, treatment 1 received 100% soil gypsum requirement (SGR), all other 3 treatments received 50% SGR and equal amounts of FYM, PM and GM, respectively. A 45 day’s incubation study comprising 0-, 15-, 30- and 45-days intervals resulted that 45 days interval was more effective in remediation than others. All the amendments effectively reclaimed the salt-affected soils and increased soil carbon stocks by increasing carbon sequestration rate through reduction in soil pH (up to 19%), electrical conductivity (EC) (up to 28%) and sodium adsorption ratio (SAR) (up to 71.55%). While cation exchange capacity (CEC) (up to 39%), soil organic matter (SOM) (up to 65%), and total nitrogen (TN) (up to 96%) was increased. SOM increase and carbon sequestration was best seen (62%- or 12.59-tons ha-1) in 50% G and FYM application as compared to control (4.45-ton ha-1) in S-1. Results obtained helps in concluding that G and its combinations with organic amendments can effectively reduce the salt concentration in salt-affected soils and helps in organic matter build-up to support crop production and carbon sequestration.

Soil Research ◽  
2010 ◽  
Vol 48 (1) ◽  
pp. 7 ◽  
Author(s):  
K. Y. Chan ◽  
A. Oates ◽  
G. D. Li ◽  
M. K. Conyers ◽  
R. J. Prangnell ◽  
...  

In Australia, pastures form the basis of the extensive livestock industries and are important components of crop rotation systems. Despite recent interest in the soil carbon sequestration value of pastures in the mitigation of climate change, little information is available on the soil carbon sequestration potential of pastures in New South Wales farming systems. To quantify the soil carbon stocks under different pastures and a range of pasture management practices, a field survey of soil carbon stocks was undertaken in 2007 in central and southern NSW as well as north-eastern Victoria, using a paired-site approach. Five comparisons were included: native v. introduced perennial, perennial v. annual, continuous v. rotational grazing, pasture cropping v. control, and improved v. unimproved pastures. Results indicated a wide range of soil organic carbon (SOC) stocks over 0–0.30 m (22.4–66.3 t C/ha), with little difference when calculated based on either constant soil depth or constant soil mass. Significantly higher SOC stocks were found only as a result of pasture improvement using P application compared with unimproved pastures. In this case, rates of sequestration were estimated to range between 0.26 and 0.72 t C/ha.year, with a mean rate of 0.41 t C/ha.year. Lack of significant differences in SOC stocks for the other pastures and pasture management practice comparisons could be due to inherent problems associated with the paired-site survey approach, i.e. large variability, difficulties in obtaining accurate site history, and the occasional absence of a valid control as well as the likely lower rates of SOC sequestration for these other comparisons. There is a need for scientific long-term trials to quantify the SOC sequestration potential of these other pastures and pasture management practices.


2011 ◽  
Vol 56 (35) ◽  
pp. 3748-3758 ◽  
Author(s):  
JuFeng Zheng ◽  
Kun Cheng ◽  
GenXing Pan ◽  
Smith Pete ◽  
LianQing Li ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1078
Author(s):  
Christopher Brock ◽  
Meike Oltmanns ◽  
Christoph Matthes ◽  
Ben Schmehe ◽  
Harald Schaaf ◽  
...  

Mixed-crop-livestock farms offer the best conditions for sustainable nutrient management in organic farming. However, if stocking rates are too low, sustainability might be threatened. Therefore, we studied the development of soil organic matter and nutrients as well as crop yields over the first course of a new long-term field experiment with a mimicked cattle stocking rate of 0.6 LU ha−1, which is the actual average stocking rate for organic farms in Germany. In the experiment, we tested the effects of additional compost application to improve organic matter supply to soils, and further, potassium sulfate fertilization for an improved nutrition of fodder legumes. Compost was made from internal resources of the farm (woody material from hedge-cutting). Soil organic matter and nutrient stocks decreased in the control treatment, even though yield levels, and thus nutrient exports, were comparably low. With compost application, soil organic matter and nutrient exports could be compensated for. At the same time, the yields increased but stayed at a moderate level. Potassium sulfate fertilization further improved N yields. We conclude that compost from internal resources is a viable solution to facilitate sustainable organic crop production at low stocking rates. However, we are aware that this option does not solve the basic problem of open nutrient cycles on the farm gate level.


2021 ◽  
Author(s):  
Hanbang Zou ◽  
Pelle Ohlsson ◽  
Edith Hammer

<p>Carbon sequestration has been a popular research topic in recent years as the rapid elevation of carbon emission has significantly impacted our climate. Apart from carbon capture and storage in e.g. oil reservoirs, soil carbon sequestration offers a long term and safe solution for the environment and human beings. The net soil carbon budget is determined by the balance between terrestrial ecosystem sink and sources of respiration to atmospheric carbon dioxide. Carbon can be long term stored as organic matters in the soil whereas it can be released from the decomposition of organic matter. The complex pore networks in the soil are believed to be able to "protect" microbial-derived organic matter from decomposition. Therefore, it is important to understand how soil structure impacts organic matter cycling at the pore scale. However, there are limited experimental studies on understanding the mechanism of physical stabilization of organic matter. Hence, my project plan is to create a heterogeneous microfluidic porous microenvironment to mimic the complex soil pore network which allows us to investigate the ability of organisms to access spaces starting from an initial ecophysiological precondition to changes of spatial accessibility mediated by interactions with the microbial community.</p><p>Microfluidics is a powerful tool that enables studies of fundamental physics, rapid measurements and real-time visualisation in a complex spatial microstructure that can be designed and controlled. Many complex processes can now be visualized enabled by the development of microfluidics and photolithography, such as microbial dynamics in pore-scale soil systems and pore network modification mimicking different soil environments – earlier considered impossible to achieve experimentally. The microfluidic channel used in this project contains a random distribution of cylindrical pillars of different sizes so as to mimic the variations found in real soil. The randomness in the design creates various spatial availability for microbes (preferential flow paths with dead-end or continuous flow) as an invasion of liquids proceeds into the pore with the lowest capillary entry pressure. In order to study the impact of different porosity in isolation of varying heterogeneity of the porous medium, different pore size chips that use the same randomly generated pore network is created. Those chips have the same location of the pillars, but the relative size of each pillar is scaled. The experiments will be carried out using sterile cultures of fluorescent bacteria, fungi and protists, synthetic communities of combinations of these, or a whole soil community inoculum. We will quantify the consumption of organic matter from the different areas via fluorescent substrates, and the bio-/necromass produced. We hypothesise that lower porosity will reduce the net decomposition of organic matter as the narrower pore throat limits the access, and that net decomposition rate at the main preferential path will be higher than inside branches</p>


SOIL ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Jonathan Sanderman ◽  
Courtney Creamer ◽  
W. Troy Baisden ◽  
Mark Farrell ◽  
Stewart Fallon

Abstract. Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha−1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity – twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.


2017 ◽  
Vol 23 (11) ◽  
pp. 4544-4555 ◽  
Author(s):  
Sam R. McNally ◽  
Mike H. Beare ◽  
Denis Curtin ◽  
Esther D. Meenken ◽  
Francis M. Kelliher ◽  
...  

2021 ◽  
Author(s):  
Enrico Balugani ◽  
Martina Maines ◽  
Denis Zannoni ◽  
Alessandro Buscaroli ◽  
Diego Marazza

<p>Soil carbon sequestration (SCS) has been identified by the IPCC as one of the most promising and cheap methodology to reduce atmospheric CO<sub>2</sub>. Moreover, an increase in soil organic carbon (SOC) levels improves soil quality by increasing soil structure (and, hence, resistance to erosion) and promoting soil ecosystems services like water retention, productivity, and biodiversity. Various agricultural techniques are available to increase SOC; among them, crop rotation can improve SOC through soil coverage, changes in water regimes, increase in both carbon inputs, and increase in soil aggregates formation.</p><p>SOC dynamic models, such as RothC, have been suggested by the IPCC as a way to evaluate the SCS potentials of different soils. Such models could also be used to evaluate the sequestration potential of different agricultural practices. Moreover RothC allows to estimate the time within which the SOC variation, due to a certain agronomic management, can be considered significant as measurable above a threshold value.</p><p>In this study, we evaluated the SOC changes for different crop rotations through direct measurements and RothC modelling, with the objective of: (a) estimating their SCS potential, and (b) propose a robust monitoring methodology for SCS practices. We performed the study in an agricultural field close to Ravenna (Italy) characterized by Cambisols and humid subtropical climate. Soil carbon content was assessed before the setup of the crop rotation, and after 3 years of rotation. A RothC model was calibrated with field data, and used to estimate SOC dynamics to 50 years, in order to assess long-term SCS. The model results were also used to assess the best methodology to estimate the SOC variation significance.</p><p>The measured SOC was similar to the equilibrium SOC predicted by the RothC model, on average, for the crop rotations. The measurements showed that the SOC, already low at the beginning of the experiment, further decreased due to the crop rotation practice. Of those tested, the best for SCS involves the following crops: corn, soybeans, wheat on tilled soil, and soybeans; while the worst is with corn, wheat on tilled soil, and wheat on untilled soil. However, the SOC variations predicted by RothC for the various rotations were too small to be observable in the field during experimentation. This could be due both to the uncertainty associated with SOC sampling and analysis, and to the short duration of the experiment. The moving average computations on the simulation values allowed us to assess the time required to measure the long-term trend of SOC variation as significant with respect to the environmental background, instrumental error, and SOC periodic fluctuations. That time was estimated to range from 8 to 50 years, changing depending on the rotation type. Periodic fluctuations in SOC should be carefully considered in a monitoring protocol to assess SCS.</p>


Sign in / Sign up

Export Citation Format

Share Document