scholarly journals Population structure in Neotropical plants: integrating pollination biology, topography and climatic niches

Author(s):  
Agnes Dellinger ◽  
Ovidiu Paun ◽  
Juliane Baar ◽  
Eva Temsch ◽  
Diana Fernández-Fernández ◽  
...  

Animal pollinators mediate gene flow among plant populations, but, in contrast to well-studied topographic and (Pleistocene) environmental isolating barriers, their impact on population genetic differentiation remains largely unexplored. Comparatively investigating how these multifarious factors drive microevolutionary histories is, however, crucial for better resolving macroevolutionary patterns of plant diversification. We here combined genomic analyses with landscape genetics and niche modelling across six related Neotropical plant species (424 individuals across 33 localities) differing in pollination strategy to test the hypothesis that highly mobile (vertebrate) pollinators more effectively link isolated localities than less mobile (bee) pollinators. We found consistently higher genetic differentiation (FST) among localities of bee- than vertebrate-pollinated species with increasing geographic distance, topographic barriers and historic climatic instability. High admixture among montane populations further suggested relative climatic stability of Neotropical montane forests during the Pleistocene. Overall, our results indicate that pollinators may differentially impact the potential for allopatric speciation, thereby critically influencing diversification histories at macroevolutionary scales.

Ecology ◽  
2010 ◽  
Vol 91 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Filipe Alberto ◽  
Peter T. Raimondi ◽  
Daniel C. Reed ◽  
Nelson C. Coelho ◽  
Raphael Leblois ◽  
...  

2021 ◽  
Vol 118 (17) ◽  
pp. e2014719118
Author(s):  
Kathryn M. Everson ◽  
Levi N. Gray ◽  
Angela G. Jones ◽  
Nicolette M. Lawrence ◽  
Mary E. Foley ◽  
...  

The North American tiger salamander species complex, including its best-known species, the Mexican axolotl, has long been a source of biological fascination. The complex exhibits a wide range of variation in developmental life history strategies, including populations and individuals that undergo metamorphosis; those able to forego metamorphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis); and those that do both. The evolution of a paedomorphic life history state is thought to lead to increased population genetic differentiation and ultimately reproductive isolation and speciation, but the degree to which it has shaped population- and species-level divergence is poorly understood. Using a large multilocus dataset from hundreds of samples across North America, we identified genetic clusters across the geographic range of the tiger salamander complex. These clusters often contain a mixture of paedomorphic and metamorphic taxa, indicating that geographic isolation has played a larger role in lineage divergence than paedomorphosis in this system. This conclusion is bolstered by geography-informed analyses indicating no effect of life history strategy on population genetic differentiation and by model-based population genetic analyses demonstrating gene flow between adjacent metamorphic and paedomorphic populations. This fine-scale genetic perspective on life history variation establishes a framework for understanding how plasticity, local adaptation, and gene flow contribute to lineage divergence. Many members of the tiger salamander complex are endangered, and the Mexican axolotl is an important model system in regenerative and biomedical research. Our results chart a course for more informed use of these taxa in experimental, ecological, and conservation research.


2020 ◽  
Vol 26 (5) ◽  
pp. 610-622 ◽  
Author(s):  
Ling Ma ◽  
Li‐Jun Cao ◽  
Ary A. Hoffmann ◽  
Ya‐Jun Gong ◽  
Jin‐Cui Chen ◽  
...  

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Rashmi Verma ◽  
Mahender Singh ◽  
Sudhir Kumar

The mitochondrial control region has been the first choice for examining the population structure but hypervariability and homoplasy have reduced its suitability. We analysed eight populations using control region for examining the population structure ofHilsa. Although the control region analysis revealed broad structuring between the Arabian Sea and Bay of Bengal (FST  0.0441,p<0.001) it was unable to detect structure among riverine populations. These results suggest that the markers used must be able to distinguish populations and control region has led to an underestimation of genetic differentiation among populations ofHilsa.


2016 ◽  
Vol 68 ◽  
pp. 170-177 ◽  
Author(s):  
Tianxiang Gao ◽  
Zhiqiang Han ◽  
Xiumei Zhang ◽  
Jing Luo ◽  
Takashi Yanagimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document