scholarly journals Modeling VLE and LLE of Deep Eutectic Solvents (DES) and Ionic Liquids (IL) Using PC-SAFT Equation of State. Part II

Author(s):  
Ali Aminian

This study aims to use Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) to describe the phase behavior of systems containing DESs and ILs. The DESs are based on Tetrabutylammonium chloride ([N4444]Cl) and Tetrabutylammonium bromide (TBAB) as hydrogen bond acceptors, and levulinic acid (LevA) and Diethylene Glycol (DEG) as hydrogen bond donors in the mole ratio of 1:2 and 1:4, respectively. The predicted phase equilibrium data from PC-SAFT has been compared to those from COSMO-RS and NRTL predictions. ILs studied in this work are low viscosity ether-functionalized pyridinium-based ILs [EnPy][NTf2] and [CmPy][NTf2], while 1-(2-methoxyethyl)-1-methylpyrrolidiniumbis(trifluoromethylsulfonyl)-amide) ([COC2mPYR][NTf2]) and 1-propyl-3-methylimidazolium bis{trifluoromethylsulfonyl}imide ([Pmim][NTf2]) were used for the study of the LLE systems with n-heptane + thiophene and n-hexane + ethylbenzene, respectively. In the last part, mixtures of linear alkanes and perfluoroalkanes have been studied to predict the phase behavior of perfluoroalkylalkanes with their linear alkane counterparts and comparisons have been made against SAFT-Mie pair potential.

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1706
Author(s):  
Fang Bai ◽  
Chao Hua ◽  
Yongzhi Bai ◽  
Mengying Ma

Deep eutectic solvents (DESs) have properties that make them suitable candidates to be used as entrainers for extractive distillation. In the previous work, it was proven that DES(1:2) (tetrabutylammonium bromide: levulinic acid, 1:2, molar ratio) can break the cyclohexane-benzene azeotrope. In the present work, the HBA and HBD ratio and molar concentration of DES were optimized to obtain a better constitute and condition of DES to be utilized in cyclohexane and benzene extractive distillation. The physical properties and structure of the prepared DESs were characterized. Vapor–liquid equilibrium data of the ternary system (benzene + cyclohexane + DESs) were also measured at atmospheric pressure. All experimental equilibrium data were correlated with Wilson, nonrandom two-liquid (NRTL), and universal quasichemical (UNIQUAC) activity coefficient models, from which the coefficient of determination (R2) of the three pseudo-ternary systems fitting was calculated. From the obtained results, the best HBA and HBD ratio in the DESs is elucidated as 1:2, the best molar concentration of DES is 0.1, and the NRTL model predicts the experimental data more accurately than the Wilson and UNIQUAC models. From the derived mechanism, the formation of stronger hydrogen bond and π–π bond interactions between DES and benzene is obtained when HBA and HBD ratio in DES is 1:2. In other conditions, the azeotrope cannot be broken, or the efficiency is low. The present work provides an environmentally friendly method to separate aromatic/aliphatic mixtures and act as a guide for further study of DESs in extractive distillation.


2019 ◽  
Vol 7 (4) ◽  
pp. 4047-4057 ◽  
Author(s):  
Carin H. J. T. Dietz ◽  
Jeremy T. Creemers ◽  
Merijn A. Meuleman ◽  
Christoph Held ◽  
Gabriele Sadowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document