Aligning Software Engineering and Artificial Intelligence With Transdisciplinary

Author(s):  
Wangai Mambo

Study examined AI and SE transdisciplinarity to find ways of aligning them to enable development of AI-SE transdisciplinary theory. Literature review and analysis method was used. The findings are AI and SE transdisciplinarity is tacit with islands within and between them that can be linked to accelerate their transdisciplinary orientation by codification, internally developing and externally borrowing and adapting transdisciplinary theories. Lack of theory has been identified as the major barrier toward towards maturing the two disciplines as engineering disciplines. Creating AI and SE transdisciplinary theory would contribute to maturing AI and SE engineering disciplines.  Implications of study are transdisciplinary theory can support mode 2 and 3 AI and SE innovations; provide an alternative for maturing two disciplines as engineering disciplines. Study’s originality it’s first in SE, AI or their intersections.

2020 ◽  
Author(s):  
Avishek Choudhury

UNSTRUCTURED Objective: The potential benefits of artificial intelligence based decision support system (AI-DSS) from a theoretical perspective are well documented and perceived by researchers but there is a lack of evidence showing its influence on routine clinical practice and how its perceived by care providers. Since the effectiveness of AI systems depends on data quality, implementation, and interpretation. The purpose of this literature review is to analyze the effectiveness of AI-DSS in clinical setting and understand its influence on clinician’s decision making outcome. Materials and Methods: This review protocol follows the Preferred Reporting Items for Systematic Reviews and Meta- Analyses reporting guidelines. Literature will be identified using a multi-database search strategy developed in consultation with a librarian. The proposed screening process consists of a title and abstract scan, followed by a full-text review by two reviewers to determine the eligibility of articles. Studies outlining application of AI based decision support system in a clinical setting and its impact on clinician’s decision making, will be included. A tabular synthesis of the general study details will be provided, as well as a narrative synthesis of the extracted data, organised into themes. Studies solely reporting AI accuracy an but not implemented in a clinical setting to measure its influence on clinical decision making were excluded from further review. Results: We identified 8 eligible studies that implemented AI-DSS in a clinical setting to facilitate decisions concerning prostate cancer, post traumatic stress disorder, cardiac ailment, back pain, and others. Five (62.50%) out of 8 studies reported positive outcome of AI-DSS. Conclusion: The systematic review indicated that AI-enabled decision support systems, when implemented in a clinical setting and used by clinicians might not ensure enhanced decision making. However, there are very limited studies to confirm the claim that AI based decision support system can uplift clinicians decision making abilities.


Author(s):  
Dane A. Morey ◽  
Jesse M. Marquisee ◽  
Ryan C. Gifford ◽  
Morgan C. Fitzgerald ◽  
Michael F. Rayo

With all of the research and investment dedicated to artificial intelligence and other automation technologies, there is a paucity of evaluation methods for how these technologies integrate into effective joint human-machine teams. Current evaluation methods, which largely were designed to measure performance of discrete representative tasks, provide little information about how the system will perform when operating outside the bounds of the evaluation. We are exploring a method of generating Extensibility Plots, which predicts the ability of the human-machine system to respond to classes of challenges at intensities both within and outside of what was tested. In this paper we test and explore the method, using performance data collected from a healthcare setting in which a machine and nurse jointly detect signs of patient decompensation. We explore the validity and usefulness of these curves to predict the graceful extensibility of the system.


2021 ◽  
Vol 11 (2) ◽  
pp. 870
Author(s):  
Galena Pisoni ◽  
Natalia Díaz-Rodríguez ◽  
Hannie Gijlers ◽  
Linda Tonolli

This paper reviews the literature concerning technology used for creating and delivering accessible museum and cultural heritage sites experiences. It highlights the importance of the delivery suited for everyone from different areas of expertise, namely interaction design, pedagogical and participatory design, and it presents how recent and future artificial intelligence (AI) developments can be used for this aim, i.e.,improving and widening online and in situ accessibility. From the literature review analysis, we articulate a conceptual framework that incorporates key elements that constitute museum and cultural heritage online experiences and how these elements are related to each other. Concrete opportunities for future directions empirical research for accessibility of cultural heritage contents are suggested and further discussed.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1317
Author(s):  
Maria Elena Laino ◽  
Angela Ammirabile ◽  
Alessandro Posa ◽  
Pierandrea Cancian ◽  
Sherif Shalaby ◽  
...  

Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.


Heliyon ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. e06626
Author(s):  
Paulina Cecula ◽  
Jiakun Yu ◽  
Fatema Mustansir Dawoodbhoy ◽  
Jack Delaney ◽  
Joseph Tan ◽  
...  

Author(s):  
Sam Hepenstal ◽  
Leishi Zhang ◽  
Neesha Kodogoda ◽  
B.L. William Wong

Criminal investigations are guided by repetitive and time-consuming information retrieval tasks, often with high risk and high consequence. If Artificial intelligence (AI) systems can automate lines of inquiry, it could reduce the burden on analysts and allow them to focus their efforts on analysis. However, there is a critical need for algorithmic transparency to address ethical concerns. In this paper, we use data gathered from Cognitive Task Analysis (CTA) interviews of criminal intelligence analysts and perform a novel analysis method to elicit question networks. We show how these networks form an event tree, where events are consolidated by capturing analyst intentions. The event tree is simplified with a Dynamic Chain Event Graph (DCEG) that provides a foundation for transparent autonomous investigations.


Sign in / Sign up

Export Citation Format

Share Document