scholarly journals Comparison between Signum transform and Euler deconvolution in magnetic data of the Paranaguá Terrane, southern Brazil

2016 ◽  
Author(s):  
Jessica D. Weihermann ◽  
Francisco J. F. Ferreira ◽  
Saulo P. Oliveira ◽  
Leonardo F. Cury
Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Yaoxin Zheng ◽  
Shiyan Li ◽  
Kang Xing ◽  
Xiaojuan Zhang

Unmanned aerial vehicles (UAVs) have become a research hotspot in the field of magnetic exploration because of their unique advantages, e.g., low cost, high safety, and easy to operate. However, the lack of effective data processing and interpretation method limits their further deployment. In view of this situation, a complete workflow of UAV magnetic data processing and interpretation is proposed in this paper, which can be divided into two steps: (1) the improved variational mode decomposition (VMD) is applied to the original data to improve its signal-to-noise ratio as much as possible, and the decomposition modes number K is determined adaptively according to the mode characteristics; (2) the parameters of target position and magnetic moment are obtained by Euler deconvolution first, and then used as the prior information of the Levenberg–Marquardt (LM) algorithm to further improve its accuracy. Experiments are carried out to verify the effectiveness of the proposed method. Results show that the proposed method can significantly improve the quality of the original data; by combining the Euler deconvolution and LM algorithm, the horizontal positioning error can be reduced from 15.31 cm to 4.05 cm, and the depth estimation error can be reduced from 16.2 cm to 5.4 cm. Moreover, the proposed method can be used not only for the detection and location of near-surface targets, but also for the follow-up work, such as the clearance of targets (e.g., the unexploded ordnance).


2007 ◽  
Vol 164 (11) ◽  
pp. 2359-2372 ◽  
Author(s):  
Pawan Dewangan ◽  
T. Ramprasad ◽  
M. V. Ramana ◽  
M. Desa ◽  
B. Shailaja

Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. L23-L28 ◽  
Author(s):  
Kristofer Davis ◽  
Yaoguo Li ◽  
Misac N. Nabighian

Euler and extended Euler deconvolution applications use an assumed structural index (SI) or calculate the SI, respectively, for magnetic anomaly data within a specified window. The structural index depends on the source type: specifically, the rate at which the field produced by the source decays. We have examined the effects that the application of low-pass filtering to magnetic data has on estimating the SI. Using a simple low-pass filter, we derived the SI for filtered-field solutions directly over, and away from, a target based on the magnetic potential of a vertical dipole [Formula: see text]. We validated this approach by applying extended Euler deconvolution to synthetic and field examples. In general, filtered magnetic data will decrease the numerically determined SI to a value lower than the theoretical one. The slope and cutoff wavelength of the filter directly affect the estimated SI solutions. The results prove that one must take into account filtering for the application of Euler deconvolution to locate dipole anomalies for unexploded ordnance detection.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1952-1961 ◽  
Author(s):  
Ahmed Salem ◽  
Dhananjay Ravat

We present a new automatic method of interpretation of magnetic data, called AN‐EUL (pronounced “an oil”). The derivation is based on a combination of the analytic signal and the Euler deconvolution methods. With AN‐EUL, both the location and the approximate geometry of a magnetic source can be deduced. The method is tested using theoretical simulations with different magnetic models placed at different depths with respect to the observation height. In all cases, the method estimated the locations and the approximate geometries of the sources. The method is tested further using ground magnetic data acquired above a shallow geological dike whose source parameters are known from drill logs, and also from airborne magnetic data measured over a known ferrometallic object. In both these cases, the method correctly estimated the locations and the nature of these sources.


2018 ◽  
Vol 29 (3) ◽  
pp. 243-259 ◽  
Author(s):  
Nuraddeen Usman ◽  
Khiruddin Abdullah ◽  
Mohd Nawawi ◽  
Amin Esmail Khalil

2017 ◽  
Vol 64 (4) ◽  
pp. 227-241
Author(s):  
Oluwaseun Tolutope Olurin

AbstractInterpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30′–8°00′N and longitudes 4°30′–5°00′E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from –77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from −500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.


Sign in / Sign up

Export Citation Format

Share Document