scholarly journals Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

2017 ◽  
Vol 64 (4) ◽  
pp. 227-241
Author(s):  
Oluwaseun Tolutope Olurin

AbstractInterpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30′–8°00′N and longitudes 4°30′–5°00′E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from –77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from −500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

2017 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Adedibu Akingboye ◽  
Abimbola Ogunyele

Enhanced magnetic data reductions via the use of various forms of filters were employed for basement classification in parts of Ekiti State. The data reductions and enhancement involve: reduction to equator (RTE), regional and residual, automatic gain control (AGC), downward continuation, upward continuations (1, 2, and 3 km), analytic signal (AS) and horizontal gradient (HG) to map and delineate basement rocks and structures, while surface relief and spectral plot were used to determine depth to top of magnetic sources. The images revealed that the study area is characterized by different lithologies. The rocks evinced lineaments and faults trending NE-SW (G–G’, H–H’, J–J’, K–K’), NNE-SSW, E-W (minor) and approximately N-S, while the dykes are in NW-SE, NNW-SSW directions. The analytic signal (AS) and horizontal gradient (HG) revealed high amplitude reversed Z-like shape as migmatite rocks, differentiating them from the two flanks with low amplitude signals as schist and quartzite schist of Ijero and Aramoko and the granitic intrusive within these migmatised rocks around Ijan, Gbonyin and Ise/Otun. The shaded relief and the spectral plot showed that the total depth to top of magnetic sources ranged from 20m to 1.8km for shallower and deeper sources respectively.


2018 ◽  
Vol 2018 (1) ◽  
pp. 1-1
Author(s):  
Peter Milligan ◽  
Larysa Halas ◽  
Ken Lawrie ◽  
Andrew McPherson ◽  
Martin Smith ◽  
...  

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. B351-B359 ◽  
Author(s):  
Peter Tschirhart ◽  
Bill Morris ◽  
Greg Hodges

Regional-residual separation is a fundamental processing step required before interpreting any magnetic anomaly data. Numerous methods have been devised to separate deep-seated long-wavelength (regional) anomalies from the near-surface high-frequency (residual) content. Such methods range in complexity from simple wavelength filtering to full 3D inversions, but most procedures rely on the assumption that all long-wavelength anomalies are associated with deep source bodies: an incorrect assumption in some geologic environments. We evaluated a new method for determining the contributions of near-surface magnetic sources using frequency-domain helicopter-borne electromagnetic (HFEM) data. We inverted the in-phase and quadrature components of the HFEM data to produce an estimate of the spatial variation of magnetic susceptibility. Using this susceptibility information along with known topography and original survey flight path data, we calculated a magnetic intensity grid by forward modeling. There are two immediate benefits to this approach. First, HFEM systems have a limited effective depth of penetration, within the first hundred meters from the surface, so any magnetic sources detected by this method must be located in the near surface. Second, the HFEM-derived susceptibility is completely independent of magnetic remanence. In contrast, apparent susceptibility computed from the original magnetic intensity data incorporates all magnetic signal sources in its derivation. Crossplotting of [Formula: see text] versus [Formula: see text] served to reveal areas where the observed magnetic field was dominated by magnetic remanence and provided an estimate of the polarity of the remanence contribution. We evaluated an example, and discussed the limitations of this method using data from an area in the Bathurst Mining Camp, New Brunswick. Though it is broadly successful, caution is needed when using this method because near-surface conductive bodies and anthropogenic sources can cause erroneous HFEM susceptibility values, which in turn produce invalid magnetic field estimates in the forward modeling exercise.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Yaoxin Zheng ◽  
Shiyan Li ◽  
Kang Xing ◽  
Xiaojuan Zhang

Unmanned aerial vehicles (UAVs) have become a research hotspot in the field of magnetic exploration because of their unique advantages, e.g., low cost, high safety, and easy to operate. However, the lack of effective data processing and interpretation method limits their further deployment. In view of this situation, a complete workflow of UAV magnetic data processing and interpretation is proposed in this paper, which can be divided into two steps: (1) the improved variational mode decomposition (VMD) is applied to the original data to improve its signal-to-noise ratio as much as possible, and the decomposition modes number K is determined adaptively according to the mode characteristics; (2) the parameters of target position and magnetic moment are obtained by Euler deconvolution first, and then used as the prior information of the Levenberg–Marquardt (LM) algorithm to further improve its accuracy. Experiments are carried out to verify the effectiveness of the proposed method. Results show that the proposed method can significantly improve the quality of the original data; by combining the Euler deconvolution and LM algorithm, the horizontal positioning error can be reduced from 15.31 cm to 4.05 cm, and the depth estimation error can be reduced from 16.2 cm to 5.4 cm. Moreover, the proposed method can be used not only for the detection and location of near-surface targets, but also for the follow-up work, such as the clearance of targets (e.g., the unexploded ordnance).


2002 ◽  
Author(s):  
Jianghai Xia ◽  
William E. Doll ◽  
Richard D. Miller ◽  
T. Jeffrey Gamey

2019 ◽  
Vol 5 (2) ◽  
pp. 143-157 ◽  
Author(s):  
Naheem Banji Salawu ◽  
Saminu Olatunji ◽  
Muyiwa Michael Orosun ◽  
Toyin Yusuf Abdulraheem

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1952-1961 ◽  
Author(s):  
Ahmed Salem ◽  
Dhananjay Ravat

We present a new automatic method of interpretation of magnetic data, called AN‐EUL (pronounced “an oil”). The derivation is based on a combination of the analytic signal and the Euler deconvolution methods. With AN‐EUL, both the location and the approximate geometry of a magnetic source can be deduced. The method is tested using theoretical simulations with different magnetic models placed at different depths with respect to the observation height. In all cases, the method estimated the locations and the approximate geometries of the sources. The method is tested further using ground magnetic data acquired above a shallow geological dike whose source parameters are known from drill logs, and also from airborne magnetic data measured over a known ferrometallic object. In both these cases, the method correctly estimated the locations and the nature of these sources.


2021 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Muhammad Yanis ◽  
Aprilla Hasibuan Anggini ◽  
Faisal Abdullah ◽  
Muzakir Zainal ◽  
Marwan Abubakar

The Geophysical method is operated by using physical parameters above the surface to estimate the subsurface structures. In data interpretation, all 3D surveys, i.e., magnetic, gravity, magnetotelluric, and airborne, are required for geographical conditions in the research area. In a large area, global DEM data is used to explain the field condition, but for local measurement, the data is not efficient due to low resolution (15-30 m/px). This research uses UAV technology to produce a high-resolution topography in local Geophysical measurement (500 x 600 m). The survey was conducted to map the coal structure in the subsurface. UAV data were also compared to SRTM (30 m/px) and DEMNAS (8 m/px) as global topography. Based on data processing, the UAV topographic was have a high resolution of 2.5 cm/px. Comparison of UAV and magnetic data are able to explain a good condition of field measurement than a global DEM data, even in a relatively small area; outcrops of the coal (50x50 m) can show a good differences contrast of topography. Based on data analysis, we can conclude that UAV technology can interpret the geophysical data measured in a local area.Keywords: UAV, SRTM, Topography, Geophysical Interpretation.Metode Geofisika bekerja dengan memanfaatkan parameter fisis diatas permukaan untuk pendugaan struktur bawah permukaan. Dalam tahapan interpretasi data, semua pengukuran 3D Geofisika; magnetic, gravity, magnetotelluric, dan airbone sangat membutuhkan keadaan geografis lapangan. Pada area yang luas, data DEM global digunakan untuk menjelaskan deskripsi lapangan, namun untuk pengukuran dekat permukaan yang bersifat lokal, data ini tidaklah efesien, karena resolusi yang relative rendah (15 – 30 m/px). Kami menggunakan teknologi UAV untuk menghasilkan topografi resolusi tinggi pada area pengukuran Geofisika dengan luas 500 x 600 m, yang disurvei untuk pemetaan batubara dibawah permukaan. Data UAV juga dibandingkan dengan topografi global SRTM (30 m/px) dan DEMNAS (8 m/px). Hasil pengolahan data menunjukkan data UAV menghasilkan topografi dengan resolusi 2.5 cm/px. Hasil overlay UAV dengan Geofisika magnetik mampu menjelaskan deskripsi lapangan dengan sangat baik dibandingkan DEM global, bahkan pada area yang relative kecil seperti singkapan batuabara (50x50 m) dapat menunjukkan keadaan perbedaan topografi dengan kontras. Berdasarkan data analysis, topografi UAV sangat potensial digunakan untuk interpretasi data Geofisika dekat permukaan yang diukur pada area yang relative lokal.Kata kunci: UAV, SRTM, Topografi, Interpretasi Geofisika.


2001 ◽  
Vol 38 (4) ◽  
pp. 657-678 ◽  
Author(s):  
Carmel Lowe ◽  
Randolph J Enkin ◽  
Lambertus C Struik

New magnetic and paleomagnetic data for central British Columbia support and quantify the hypothesis that the area underwent significant Tertiary-age transtensional deformation. Paleomagnetically determined tilts in Eocene rocks indicate that four fault-bounded pits, which constitute the Endako molybdenum mine, were displaced on a series of normal (probably listric) faults that have separations of less than a kilometre. The interpretation also suggests there can be little vertical offset on the Denak West Fault, which separates the Denak East and Denak West pits. Regional paleomagnetic data indicate a predominance of easterly directed tilts to the east of the Casey Fault, but to the west a large variation in the orientation and magnitude of tilts is observed. Results at one site proximal to the Casey Fault indicate a component of dip-slip displacement on this dominantly dextral strike-slip fault. Mapped northeast- and northwest-trending faults commonly correspond to linear zones of steep magnetic gradient and near-surface magnetic sources. Several additional northwest- and northeast-trending lineaments are imaged in the magnetic data where no faults are mapped (particularly over massive and lithologically homogeneous phases of the Endako batholith). Euler deconvolution solutions confirm most such lineaments are also associated with shallow magnetic sources. In profile, they have either a fault or dyke character and are interpreted to be unmapped faults, some locally intruded by mafic dykes, which cut the region into a series of fault-bounded blocks.


Sign in / Sign up

Export Citation Format

Share Document