scholarly journals On Mathieu-type series for the unified Gaussian hypergeometric functions

2020 ◽  
Vol 14 (1) ◽  
pp. 138-149
Author(s):  
Rakesh Parmar ◽  
Tibor Pogány

The main purpose of this paper is to present closed integral form expressions for the Mathieu-type a-series and for the associated alternating versions whose terms contain a generalized p-extended Gauss' hypergeometric function. Related bounding inequalities for the p-generalized Mathieu-type series are also obtained. Finally, a set of various (known or new) special cases and consequences of the results earned are presented.

2021 ◽  
Vol 21 (2) ◽  
pp. 429-436
Author(s):  
SEEMA KABRA ◽  
HARISH NAGAR

In this present work we derived integral transforms such as Euler transform, Laplace transform, and Whittaker transform of K4-function. The results are given in generalized Wright function. Some special cases of the main result are also presented here with new and interesting results. We further extended integral transforms derived here in terms of Gauss Hypergeometric function.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
D. Baleanu ◽  
S. D. Purohit ◽  
Praveen Agarwal

Here we aim at establishing certain new fractional integral inequalities involving the Gauss hypergeometric function for synchronous functions which are related to the Chebyshev functional. Several special cases as fractional integral inequalities involving Saigo, Erdélyi-Kober, and Riemann-Liouville type fractional integral operators are presented in the concluding section. Further, we also consider their relevance with other related known results.


2020 ◽  
Vol 27 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh K. Parmar ◽  
Purnima Chopra

AbstractMotivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 2014, 484–491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.


2005 ◽  
Vol 2005 (1) ◽  
pp. 143-153 ◽  
Author(s):  
M. I. Qureshi ◽  
M. Sadiq Khan ◽  
M. A. Pathan

Some generalizations of Bailey's theorem involving the product of two Kummer functions1F1are obtained by using Watson's theorem and Srivastava's identities. Its special cases yield various new transformations and reduction formulae involving Pathan's quadruple hypergeometric functionsFp(4), Srivastava's triple and quadruple hypergeometric functionsF(3),F(4), Lauricella's quadruple hypergeometric functionFA(4), Exton's multiple hypergeometric functionsXE:G;HA:B;D,K10,K13,X8,(k)H2(n),(k)H4(n), Erdélyi's multiple hypergeometric functionHn,k, Khan and Pathan's triple hypergeometric functionH4(P), Kampé de Fériet's double hypergeometric functionFE:G;HA:B;D, Appell's double hypergeometric function of the second kindF2, and the Srivastava-Daoust functionFD:E(1);E(2);…;E(n)A:B(1);B(2);…;B(n). Some known results of Buschman, Srivastava, and Bailey are obtained.


2021 ◽  
Vol 7 (4) ◽  
pp. 4974-4991
Author(s):  
Ye-Cong Han ◽  
◽  
Chuan-Yu Cai ◽  
Ti-Ren Huang ◽  

<abstract><p>In this paper, we mainly prove monotonicity and convexity properties of certain functions involving zero-balanced Gaussian hypergeometric function $ F(a, b; a+b; x) $. We generalize conclusions of elliptic integral to Gaussian hypergeometric function, and get some accurate inequalities about Gaussian hypergeometric function.</p></abstract>


1999 ◽  
Vol 22 (4) ◽  
pp. 765-773 ◽  
Author(s):  
Yong Chan Kim ◽  
S. Ponnusamy

LetF(a,b;c;z)be the classical hypergeometric function andfbe a normalized analytic functions defined on the unit disk𝒰. Let an operatorIa,b;c(f)be defined by[Ia,b;c(f)](z)=zF(a,b;c;z)*f(z). In this paper the authors identify two subfamilies of analytic functionsℱ1andℱ2and obtain conditions on the parametersa,b,csuch thatf∈ℱ1impliesIa,b;c(f)∈ℱ2.


Author(s):  
Bujar Xh. Fejzullahu

In this paper, we derive a new contour integral representation for the confluent hypergeometric function as well as for its various special cases. Consequently, we derive expansions of the confluent hypergeometric function in terms of functions of the same kind. Furthermore, we obtain a new identity involving integrals and sums of confluent hypergeometric functions. Our results generalized several well-known results in the literature.


2003 ◽  
Vol 01 (01) ◽  
pp. 111-120 ◽  
Author(s):  
A. B. OLDE DAALHUIS

In this paper, we obtain an asymptotic expansion for the Gauss hypergeometric function 2F1(a, b - λ; c + λ; -z), as |λ| → ∞. The expansion holds for fixed values of a, b, and c, and is uniformly valid for z in the domain | ph z| < π.


2019 ◽  
pp. 1-7
Author(s):  
J. F. HARPER

Asymptotic expansions of the Gauss hypergeometric function with large parameters, $F(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D716}_{1}\unicode[STIX]{x1D70F},\unicode[STIX]{x1D6FD}+\unicode[STIX]{x1D716}_{2}\unicode[STIX]{x1D70F};\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D716}_{3}\unicode[STIX]{x1D70F};z)$ as $|\unicode[STIX]{x1D70F}|\rightarrow \infty$ , are known for many special cases, but not for one that the author encountered in recent work on fluid mechanics: $\unicode[STIX]{x1D716}_{2}=0$ and $\unicode[STIX]{x1D716}_{3}=\unicode[STIX]{x1D716}_{1}z$ . This paper gives the leading term for that case if $\unicode[STIX]{x1D6FD}$ is not a negative integer and $z$ is not on the branch cut $[1,\infty )$ , and it shows how subsequent terms can be found.


1965 ◽  
Vol 7 (1) ◽  
pp. 42-44 ◽  
Author(s):  
Jet Wimp

In this note, we first establish an integral transform pair where the kernel of each integral involves the Gaussian hypergeometric function. Special cases of Theorem 1 have been studied by several authors [1, 2, 5, 6]. In Theorem 2 a similar integral transform pair involving a confluent hypergeometric function is given.


Sign in / Sign up

Export Citation Format

Share Document