scholarly journals Remarks on upper and lower bounds formatching sequencibility of graphs

Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2091-2099
Author(s):  
Shuya Chiba ◽  
Yuji Nakano

In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20] defined the matching sequencibility of a graph G to be the largest integer k such that there exists a linear ordering of its edges so that every k consecutive edges in the linear ordering form a matching of G, which is denoted by ms(G). In this paper, we show that every graph G of size q and maximum degree ? satisfies 1/2?q/?+1? ? ms(G) ? ?q?1/??1? by using the edge-coloring of G, and we also improve this lower bound for some particular graphs. We further discuss the relationship between the matching sequencibility and a conjecture of Seymour about the existence of the kth power of a Hamilton cycle.

Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


10.37236/3262 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Simon R. Blackburn

A rack of order $n$ is a binary operation $\vartriangleright$ on a set $X$ of cardinality $n$, such that right multiplication is an automorphism. More precisely, $(X,\vartriangleright)$ is a rack provided that the map $x\mapsto x\vartriangleright y$ is a bijection for all $y\in X$, and $(x\vartriangleright y)\vartriangleright z=(x\vartriangleright z)\vartriangleright (y\vartriangleright z)$ for all $x,y,z\in X$.The paper provides upper and lower bounds of the form $2^{cn^2}$ on the number of isomorphism classes of racks of order $n$. Similar results on the number of isomorphism classes of quandles and kei are obtained. The results of the paper are established by first showing how an arbitrary rack is related to its operator group (the permutation group on $X$ generated by the maps $x\mapsto x\vartriangleright y$ for $y\in Y$), and then applying some of the theory of permutation groups. The relationship between a rack and its operator group extends results of Joyce and of Ryder; this relationship might be of independent interest.


10.37236/3097 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Fateme Raei Barandagh ◽  
Amir Rahnamai Barghi

Let $n>1$ be an integer and $p$ be a prime number. Denote by $\mathfrak{C}_{p^n}$ the class of non-thin association $p$-schemes of degree $p^n$. A sharp upper and lower bounds on the rank of schemes in $\mathfrak{C}_{p^n}$ with a certain order of thin radical are obtained. Moreover, all schemes in this class whose rank are equal to the lower bound are characterized and some schemes in this class whose rank are equal to the upper bound are constructed. Finally, it is shown that the scheme with minimum rank in $\mathfrak{C}_{p^n}$ is unique up to isomorphism, and it is a fusion of any association $p$-schemes with degree $p^n$.


2017 ◽  
Vol 7 (2) ◽  
pp. 169-181
Author(s):  
Audra McMillan ◽  
Adam Smith

Abstract Block graphons (also called stochastic block models) are an important and widely studied class of models for random networks. We provide a lower bound on the accuracy of estimators for block graphons with a large number of blocks. We show that, given only the number $k$ of blocks and an upper bound $\rho$ on the values (connection probabilities) of the graphon, every estimator incurs error ${\it{\Omega}}\left(\min\left(\rho, \sqrt{\frac{\rho k^2}{n^2}}\right)\right)$ in the $\delta_2$ metric with constant probability for at least some graphons. In particular, our bound rules out any non-trivial estimation (that is, with $\delta_2$ error substantially less than $\rho$) when $k\geq n\sqrt{\rho}$. Combined with previous upper and lower bounds, our results characterize, up to logarithmic terms, the accuracy of graphon estimation in the $\delta_2$ metric. A similar lower bound to ours was obtained independently by Klopp et al.


2014 ◽  
Vol 25 (07) ◽  
pp. 877-896 ◽  
Author(s):  
MARTIN KUTRIB ◽  
ANDREAS MALCHER ◽  
MATTHIAS WENDLANDT

We investigate the descriptional complexity of deterministic one-way multi-head finite automata accepting unary languages. It is known that in this case the languages accepted are regular. Thus, we study the increase of the number of states when an n-state k-head finite automaton is simulated by a classical (one-head) deterministic or nondeterministic finite automaton. In the former case upper and lower bounds that are tight in the order of magnitude are shown. For the latter case we obtain an upper bound of O(n2k) and a lower bound of Ω(nk) states. We investigate also the costs for the conversion of one-head nondeterministic finite automata to deterministic k-head finite automata, that is, we trade nondeterminism for heads. In addition, we study how the conversion costs vary in the special case of finite and, in particular, of singleton unary lanuages. Finally, as an application of the simulation results, we show that decidability problems for unary deterministic k-head finite automata such as emptiness or equivalence are LOGSPACE-complete.


2010 ◽  
Vol 02 (03) ◽  
pp. 363-377 ◽  
Author(s):  
CHARLES R. JOHNSON ◽  
YULIN ZHANG

Given are tight upper and lower bounds for the minimum rank among all matrices with a prescribed zero–nonzero pattern. The upper bound is based upon solving for a matrix with a given null space and, with optimal choices, produces the correct minimum rank. It leads to simple, but often accurate, bounds based upon overt statistics of the pattern. The lower bound is also conceptually simple. Often, the lower and an upper bound coincide, but examples are given in which they do not.


2011 ◽  
Vol 12 (01n02) ◽  
pp. 1-17 ◽  
Author(s):  
VITTORIO BILÒ ◽  
ROBERTA BOVE

After almost seven years from its definition,2 the price of stability of undirected network design games with fair cost allocation remains to be elusive. Its exact characterization has been achieved only for the basic case of two players2,7 and, as soon as the number of players increases, the gap between the known upper and lower bounds becomes super-constant, even in the special variants of multicast and broadcast games. Motivated by the intrinsic difficulties that seem to characterize this problem, we analyze the already challenging case of three players and provide either new or improved bounds. For broadcast games, we prove an upper bound of 1.485 which exactly matches a lower bound given in Ref. 4; for multicast games, we show new upper and lower bounds which confine the price of stability in the interval [1.524; 1.532]; while, for the general case, we give an improved upper bound of 1.634. The techniques exploited in this paper are a refinement of those used in Ref. 7 and can be easily adapted to deal with all the cases involving a small number of players.


1987 ◽  
Vol 17 (10) ◽  
pp. 1309-1311 ◽  
Author(s):  
Karl Gustaf Löfgren

In this paper one well-known property and one less known property of the present value function are used to provide upper and lower bounds on the change in the value of forest land when land value is evaluated at any two different discounted price vectors. The lower bound is expressed in possibly known entities of the original harvesting program.


1969 ◽  
Vol 47 (17) ◽  
pp. 1877-1879 ◽  
Author(s):  
Maurice Cohen ◽  
Tova Feldmann

The classical procedure of Weinstein has been employed to obtain rigorous upper and lower bounds to the eigenvalues E of a quantum mechanical Hamiltonian operator H. The new bounds represent an improvement over Weinstein's bounds for any reasonable choice of variational trial function. In the case of the lowest eigenvalue E0, for which the Rayleigh–Ritz procedure gives the optimum upper bound, the new lower bound is an improvement over the lower bound formula of Stevenson and Crawford.


2018 ◽  
Vol 29 (04) ◽  
pp. 551-569 ◽  
Author(s):  
Elisabet Burjons ◽  
Juraj Hromkovič ◽  
Rastislav Královič ◽  
Richard Královič ◽  
Xavier Muñoz ◽  
...  

We consider an online model where an adversary constructs a set of [Formula: see text] instances [Formula: see text] instead of one single instance. The algorithm knows [Formula: see text] and the adversary will choose one instance from [Formula: see text] at random to present to the algorithm. We further focus on adversaries that construct sets of [Formula: see text]-chromatic instances. In this setting, we provide upper and lower bounds on the competitive ratio for the online graph coloring problem as a function of the parameters in this model. Both bounds are linear in [Formula: see text] and matching upper and lower bound are given for a specific set of algorithms that we call “minimalistic online algorithms”.


Sign in / Sign up

Export Citation Format

Share Document