scholarly journals U(X) as a ring for metric spaces X

Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1981-1984 ◽  
Author(s):  
Sànchez Cabello

In this short paper, we will show that the space of real valued uniformly continuous functions defined on a metric space (X,d) is a ring if and only if every subset A ? X has one of the following properties: ? A is Bourbaki-bounded, i.e., every uniformly continuous function on X is bounded on A. ? A contains an infinite uniformly isolated subset, i.e., there exist ? > 0 and an infinite subset F ? A such that d(a,x) ? ? for every a ? F, x ? X n \{a}.

1986 ◽  
Vol 33 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Gerald Beer

An Atsuji space is a metric space X such that each continuous function form X to an arbitrary metric space Y is uniformly continuous. We here present (i) characterizations of metric spaces with Atsuji completions; (ii) Cantor-type theorems for Atsuji spaces; (iii) a fixed point theorem for self-maps of an Atsuji space.


2021 ◽  
pp. 3031-3038
Author(s):  
Raghad I. Sabri

      The theories of metric spaces and fuzzy metric spaces are crucial topics in mathematics.    Compactness is one of the most important and fundamental properties that have been widely used in Functional Analysis. In this paper, the definition of compact fuzzy soft metric space is introduced and some of its important theorems are investigated. Also, sequentially compact fuzzy soft metric space and locally compact fuzzy soft metric space are defined and the relationships between them are studied. Moreover, the relationships between each of the previous two concepts and several other known concepts are investigated separately. Besides, the compact fuzzy soft continuous functions are studied and some essential theorems are proved.


1975 ◽  
Vol 18 (1) ◽  
pp. 143-145 ◽  
Author(s):  
L. T. Gardner ◽  
P. Milnes

AbstractA theorem of M. Katětov asserts that a bounded uniformly continuous function f on a subspace Q of a uniform space P has a bounded uniformly continuous extension to all of P. In this note we give new proofs of two special cases of this theorem: (i) Q is totally bounded, and (ii) P is a locally compact group and Q is a subgroup, both P and Q having the left uniformity.


Filomat ◽  
2013 ◽  
Vol 27 (5) ◽  
pp. 925-930 ◽  
Author(s):  
Hüseyin Çakallı ◽  
Ayșe Sӧnmez

In this paper, we investigate slowly oscillating continuity in cone metric spaces. It turns out that the set of slowly oscillating continuous functions is equal to the set of uniformly continuous functions on a slowly oscillating compact subset of a topological vector space valued cone metric space.


2021 ◽  
Vol 7 (4) ◽  
pp. 85
Author(s):  
Mohammed S. Rasheed

<p>In the present paper, the definitions of a fuzzy continuous function and uniformly fuzzy continuous  are introduced. we prove that a function  from a fuzzy metric space ( ) into a fuzzy metric space ( )  is fuzzy continuous if and only if for every fuzzy open subset  of ,   is fuzzy open in . Also the composition function of two uniformly fuzzy continuous functions is proved to be a uniformly fuzzy continuous function.</p>


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


1980 ◽  
Vol 32 (4) ◽  
pp. 867-879
Author(s):  
Ronnie Levy

If X is a dense subspace of Y, much is known about the question of when every bounded continuous real-valued function on X extends to a continuous function on Y. Indeed, this is one of the central topics of [5]. In this paper we are interested in the opposite question: When are there continuous bounded real-valued functions on X which extend to no point of Y – X? (Of course, we cannot hope that every function on X fails to extend since the restrictions to X of continuous functions on Y extend to Y.) In this paper, we show that if Y is a compact metric space and if X is a dense subset of Y, then X admits a bounded continuous function which extends to no point of Y – X if and only if X is completely metrizable. We also show that for certain spaces Y and dense subsets X, the set of bounded functions on X which extend to a point of Y – X form a first category subset of C*(X).


2021 ◽  
Vol 33 (4) ◽  
pp. 23-25
Author(s):  
YASHVIR SINGH ◽  

In this paper a fixed point theorem have been proved in dislocated metric spaces using a class of continuous function G4.


Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3777-3787
Author(s):  
Mona Khandaqji ◽  
Aliaa Burqan

For a Banach space X, L?(T,X) denotes the metric space of all X-valued ?-integrable functions f : T ? X, where the measure space (T,?,?) is a complete positive ?-finite and ? is an increasing subadditive continuous function on [0,?) with ?(0) = 0. In this paper we discuss the proximinality problem for the monotonous norm on best simultaneous approximation from the closed subspace Y?X to a finite number of elements in X.


2009 ◽  
Vol 44 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Miloslav Duchoň ◽  
Peter Maličký

Abstract We present a Helly type theorem for sequences of functions with values in metric spaces and apply it to representations of some mappings on the space of continuous functions. A generalization of the Riesz theorem is formulated and proved. More concretely, a representation of certain majored linear operators on the space of continuous functions into a complete metric space.


Sign in / Sign up

Export Citation Format

Share Document