Integrable Models

Author(s):  
S. G. Rajeev

Some exceptional situations in fluid mechanics can be modeled by equations that are analytically solvable. The most famous example is the Korteweg–de Vries (KdV) equation for shallow water waves in a channel. The exact soliton solution of this equation is derived. The Lax pair formalism for solving the general initial value problem is outlined. Two hamiltonian formalisms for the KdV equation (Fadeev–Zakharov and Magri) are explained. Then a short review of the geometry of curves (Frenet–Serret equations) is given. They are used to derive a remarkably simple equation for the propagation of a kink along a vortex filament. This equation of Hasimoto has surprising connections to the nonlinear Schrödinger equation and to the Heisenberg model of ferromagnetism. An exact soliton solution is found.

1971 ◽  
Vol 47 (4) ◽  
pp. 811-824 ◽  
Author(s):  
N. J. Zabusky ◽  
C. J. Galvin

A comparison of laboratory experiments in a shallow-water tank driven by an oscillating piston and numerical solutions of the Korteweg-de Vries (KdV) equation show that the latter can accurately describe slightly dissipative wavepropagation for Ursell numbers (h1L2/h03) up to 800. This is an input-output experiment, where the initial condition for the KdV equation is obtained from upstream (station 1) data. At a downstream location, the number of crests and troughs and their phases (or relative locations within a period) agree quantitatively with numerical solutions. The crest-to-trough amplitudes disagree somewhat, as they are more sensitive to dissipative forces. This work firmly establishes the soliton concept as necessary for treating the propagation of shallow-water waves of moderate amplitude in a low-dissipation environment.


2019 ◽  
Vol 875 ◽  
pp. 1145-1174 ◽  
Author(s):  
T. Congy ◽  
G. A. El ◽  
M. A. Hoefer

A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical example of dynamic wavepacket–mean flow interaction. Modulation equations are derived for the coupling between linear wave modulations and a nonlinear mean flow. These equations admit a particular class of solutions that describe the transmission or trapping of a linear wavepacket by an unsteady hydrodynamic state. Two adiabatic invariants of motion are identified that determine the transmission, trapping conditions and show that wavepackets incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves exhibit so-called hydrodynamic reciprocity recently described in Maiden et al. (Phys. Rev. Lett., vol. 120, 2018, 144101) in the context of hydrodynamic soliton tunnelling. The modulation theory results are in excellent agreement with direct numerical simulations of full KdV dynamics. The integrability of the KdV equation is not invoked so these results can be extended to other nonlinear dispersive fluid mechanic models.


2002 ◽  
Vol 44 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Partha Guha

AbstractIn this paper we consider a projective connection as defined by the nth-order Adler-Gelfand-Dikii (AGD) operator on the circle. It is well-known that the Korteweg-de Vries (KdV) equation is the archetypal example of a scalar Lax equation defined by a Lax pair of scalar nth-order differential (AGD) operators. In this paper we derive (formally) the KdV equation as an evolution equation of the AGD operator (at least for n ≤ 4) under the action of Vect(S1). The solutions of the AGD operator define an immersion R → RPn−1 in homogeneous coordinates. In this paper we derive the Schwarzian KdV equation as an evolution of the solution curve associated with Δ(n), for n ≤ 4.


2004 ◽  
Vol 2004 (6) ◽  
pp. 453-460 ◽  
Author(s):  
Peter Byers ◽  
A. Alexandrou Himonas

We construct nonanalytic solutions to the initial value problem for the KdV equation with analytic initial data in both the periodic and the nonperiodic cases.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Piotr Rozmej ◽  
Anna Karczewska

New exact solutions to the KdV2 equation (also known as the extended KdV equation) are constructed. The KdV2 equation is a second-order approximation of the set of Boussinesq’s equations for shallow water waves which in first-order approximation yields KdV. The exact solutionsA/2dn2[B(x-vt),m]±m cn[B(x-vt),m]dn[B(x-vt),m]+Din the form of periodic functions found in the paper complement other forms of exact solutions to KdV2 obtained earlier, that is, the solitonic ones and periodic ones given by singlecn2ordn2Jacobi elliptic functions.


2017 ◽  
Vol 22 (3) ◽  
pp. 373-388 ◽  
Author(s):  
Turgut Ak ◽  
Sharanjeet Dhawan ◽  
S. Battal Gazi Karakoc ◽  
Samir K. Bhowmik ◽  
Kamal R. Raslan

In the present paper, a numerical method is proposed for the numerical solution of Rosenau-KdV equation with appropriate initial and boundary conditions by using collocation method with septic B-spline functions on the uniform mesh points. The method is shown to be unconditionally stable using von-Neumann technique. To check accuracy of the error norms L2 and L∞ are computed. Interaction of two and three solitary waves are used to discuss the effect of the behavior of the solitary waves during the interaction. Furthermore, evolution of solitons is illustrated by undular bore initial condition. These results show that the technique introduced here is suitable to investigate behaviors of shallow water waves.


1996 ◽  
Vol 323 ◽  
pp. 65-78 ◽  
Author(s):  
R. S. Johnson

A two-dimensional Boussinesq equation, \[u_{tt} - u_{xx} + 3(u^2)_{xx} - u_{xxxx} - u_{yy} = 0,\] is introduced to describe the propagation of gravity waves on the surface of water, in particular the head-on collision of oblique waves. This equation combines the two-way propagation of the classical Boussinesq equation with the (weak) dependence on a second spatial variable, as occurs in the two-dimensional Korteweg-de Vries (2D KdV) (or KPII) equation. Exact and general solitary-wave, two-soliton and resonant solutions are obtained from the Hirota bilinear form of the equation. The existence of a distributed-soliton solution is investigated, but it is shown that this is not a possibility. However the connection with the classical 2D KdV equation (which does possess such a solution) is explored via a suitable parametric representation of the dispersion relation.A three-soliton solution is also constructed, but this exists only if an auxiliary constraint among the six parameters is satisfied; thus the two-dimensional Boussinesq equation is not one of the class of completely integrable equations, confirming the analysis of Hietarinta (1987). This constraint is automatically satisfied for the classical Boussinesq equation (which is completely integrable). Graphical reproductions of some of the solutions of the two-dimensional Boussinesq equations are also presented.


1997 ◽  
Vol 112 (1) ◽  
pp. 866-874 ◽  
Author(s):  
L. A. Kalyakin ◽  
V. A. Lazarev

Sign in / Sign up

Export Citation Format

Share Document