scholarly journals On extremal bipartite graphs with a given connectivity

Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1531-1540
Author(s):  
Hanlin Chen ◽  
Hanyuan Deng ◽  
Renfang Wu

Let I(G) be a topological index of a graph. If I(G + e) < I(G) (or I(G + e) > I(G), respectively) for each edge e ? G, then I(G) is decreasing (or increasing, respectively) with addition of edges. In this paper, we determine the extremal values of some monotonic topological indices which decrease or increase with addition of edges, and characterize the corresponding extremal graphs among bipartite graphs with a given connectivity.

2020 ◽  
Vol 12 (02) ◽  
pp. 2050015
Author(s):  
Hanlin Chen ◽  
Renfang Wu

Let [Formula: see text] be a topological index of a graph. If [Formula: see text] (or [Formula: see text], respectively) for each edge [Formula: see text], then [Formula: see text] is monotonically decreasing (or increasing, respectively) with the addition of edges. In this paper, by a unified approach, we determine the extremal values of some monotonic topological indices, including the Wiener index, the hyper-Wiener index, the Harary index, the connective eccentricity index, the eccentricity distance sum, among all connected bipartite graphs with a given number of cut edges, and characterize the corresponding extremal graphs, respectively.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Stijn Cambie

In this paper, we prove a collection of results on graphical indices. We determine the extremal graphs attaining the maximal generalized Wiener index (e.g. the hyper-Wiener index) among all graphs with given matching number or independence number. This generalizes some work of Dankelmann, as well as some work of Chung. We also show alternative proofs for two recents results on maximizing the Wiener index and external Wiener index by deriving it from earlier results. We end with proving two conjectures. We prove that the maximum for the difference of the Wiener index and the eccentricity is attained by the path if the order $n$ is at least $9$ and that the maximum weighted Szeged index of graphs of given order is attained by the balanced complete bipartite graphs.


2017 ◽  
Vol 23 (1) ◽  
pp. 277-289
Author(s):  
Juan Rada

In this paper we give a complete description of the ordering relations in the set of catacondensed hexagonal systems, with respect to a vertex-degree-based topological index. As a consequence, extremal values of vertex-degree-based topological indices in special subsets of the set of catacondensed hexagonal systems are computed.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1903
Author(s):  
Juan Monsalve ◽  
Juan Rada

A vertex-degree-based (VDB, for short) topological index φ induced by the numbers φij was recently defined for a digraph D, as φD=12∑uvφdu+dv−, where du+ denotes the out-degree of the vertex u,dv− denotes the in-degree of the vertex v, and the sum runs over the set of arcs uv of D. This definition generalizes the concept of a VDB topological index of a graph. In a general setting, we find sharp lower and upper bounds of a symmetric VDB topological index over Dn, the set of all digraphs with n non-isolated vertices. Applications to well-known topological indices are deduced. We also determine extremal values of symmetric VDB topological indices over OTn and OG, the set of oriented trees with n vertices, and the set of all orientations of a fixed graph G, respectively.


2021 ◽  
Vol 10 (4) ◽  
pp. 2115-2129
Author(s):  
P. Kandan ◽  
S. Subramanian

On the great success of bond-additive topological indices like Szeged, Padmakar-Ivan, Zagreb, and irregularity measures, yet another index, the Mostar index, has been introduced recently as a peripherality measure in molecular graphs and networks. For a connected graph G, the Mostar index is defined as $$M_{o}(G)=\displaystyle{\sum\limits_{e=gh\epsilon E(G)}}C(gh),$$ where $C(gh) \,=\,\left|n_{g}(e)-n_{h}(e)\right|$ be the contribution of edge $uv$ and $n_{g}(e)$ denotes the number of vertices of $G$ lying closer to vertex $g$ than to vertex $h$ ($n_{h}(e)$ define similarly). In this paper, we prove a general form of the results obtained by $Do\check{s}li\acute{c}$ et al.\cite{18} for compute the Mostar index to the Cartesian product of two simple connected graph. Using this result, we have derived the Cartesian product of paths, cycles, complete bipartite graphs, complete graphs and to some molecular graphs.


2020 ◽  
Vol 13 (5) ◽  
pp. 1149-1161
Author(s):  
T Deepika ◽  
V. Lokesha

A Topological index is a numeric quantity which characterizes the whole structure of a graph. Adriatic indices are also part of topological indices, mainly it is classified into two namely extended variables and discrete adriatic indices, especially, discrete adriatic indices are analyzed on the testing sets provided by the International Academy of Mathematical Chemistry (IAMC) and it has been shown that they have good presaging substances in many compacts. This contrived attention to compute some discrete adriatic indices of probabilistic neural networks.


2021 ◽  
Vol 12 (6) ◽  
pp. 7249-7266

Topological index is a numerical representation of a chemical structure. Based on these indices, physicochemical properties, thermodynamic behavior, chemical reactivity, and biological activity of chemical compounds are calculated. Acetaminophen is an essential drug to prevent/treat various types of viral fever, including malaria, flu, dengue, SARS, and even COVID-19. This paper computes the sum and multiplicative version of various topological indices such as General Zagreb, General Randić, General OGA, AG, ISI, SDD, Forgotten indices M-polynomials of Acetaminophen. To the best of our knowledge, for the Acetaminophen drugs, these indices have not been computed previously.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ghazanfar Abbas ◽  
Muhammad Ibrahim ◽  
Ali Ahmad ◽  
Muhammad Azeem ◽  
Kashif Elahi

Natural zeolites are commonly described as macromolecular sieves. Zeolite networks are very trendy chemical networks due to their low-cost implementation. Sodalite network is one of the most studied types of zeolite networks. It helps in the removal of greenhouse gases. To study this rich network, we use an authentic mathematical tool known as M-polynomials of the topological index and show some physical and chemical properties in numerical form, and to understand the structure deeply, we compare different legitimate M-polynomials of topological indices, concluding in the form of graphical comparisons.


Sign in / Sign up

Export Citation Format

Share Document