scholarly journals New error estimation based on midpoint iterative method for solving nonlinear fuzzy fredholm integral equations

Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1773-1782 ◽  
Author(s):  
Vahid Mahaleh ◽  
Reza Ezzati

In this paper, first, we apply the successive approximations method in terms of midpoint quadrature formula to solve nonlinear fuzzy Fredholm integral equations of the second kind (NFFIE-2). Considering some assumptions, we acquire a new error estimation. Moreover, we prove the convergence of the proposed method. Then, we study the numerical stability of the proposed method with respect to the first iteration choice. Eventually, to demonstrate the accuracy of the suggested method, we present two numerical examples.

Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4923-4935 ◽  
Author(s):  
Vahid Mahaleh ◽  
Reza Ezzati

In this paper, first, we introduce a successive approximation method in terms of a combination of Bernstein polynomials and block-pulse functions. The proposed method is given for solving two dimensional nonlinear fuzzy Fredholm integral equations of the second kind. Then, we present the convergence of the proposed method. Also we investigate the numerical stability of the method with respect to the choice of the first iteration. Finally, two numerical examples are presented to show the accuracy of the method.


1991 ◽  
Vol 113 (3) ◽  
pp. 280-284 ◽  
Author(s):  
T. Nishimura

A new method is proposed for analyzing the stress intensity factors of multiple cracks in a sheet reinforced with riveted stiffeners. Using the basic solution of a single crack and taking unknown density of surface tractions and fastener forces, Fredholm integral equations and compatibility equations of displacements among the sheet, fasteners, and stiffeners are formulated. After solving the unknown density, the stress intensity factors of multiple cracks in the sheet are determined. Some numerical examples are analyzed.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Changqing Yang

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm-type equations, which have many applications in mathematical physics, are then considered. The method is based upon hybrid function approximate. The properties of hybrid of block-pulse functions and Chebyshev series are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.


2018 ◽  
Vol 9 (1-2) ◽  
pp. 16-27 ◽  
Author(s):  
Mohamed Abdel- Latif Ramadan ◽  
Mohamed R. Ali

In this paper, an efficient numerical method to solve a system of linear fuzzy Fredholm integral equations of the second kind based on Bernoulli wavelet method (BWM) is proposed. Bernoulli wavelets have been generated by dilation and translation of Bernoulli polynomials. The aim of this paper is to apply Bernoulli wavelet method to obtain approximate solutions of a system of linear Fredholm fuzzy integral equations. First we introduce properties of Bernoulli wavelets and Bernoulli polynomials, then we used it to transform the integral equations to the system of algebraic equations. The error estimates of the proposed method is given and compared by solving some numerical examples.


Sign in / Sign up

Export Citation Format

Share Document