scholarly journals Counting visible levels in bargraphs and set partitions

Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6229-6237 ◽  
Author(s):  
Nenad Cakic ◽  
Toufik Mansour ◽  
Rebecca Smith

In this paper, we study the generating functions for the number of visible levels in compositions of n and set partitions of [n].

10.37236/1059 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Anisse Kasraoui ◽  
Jiang Zeng

We construct an involution on set partitions which keeps track of the numbers of crossings, nestings and alignments of two edges. We derive then the symmetric distribution of the numbers of crossings and nestings in partitions, which generalizes a recent result of Klazar and Noy in perfect matchings. By factorizing our involution through bijections between set partitions and some path diagrams we obtain the continued fraction expansions of the corresponding ordinary generating functions.


10.37236/2976 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize $3$-crossings and $3$-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards.We enumerate $312$-avoiding matchings and partitions, obtaining algebraic generating functions, in contrast with the known D-finite generating functions for the $321$-avoiding (i.e., $3$-noncrossing) case. Our approach provides a more direct proof of a formula of Bóna for the number of $1342$-avoiding permutations. We also give a bijective proof of the shape-Wilf-equivalence of the patterns $321$ and $213$ which greatly simplifies existing proofs by Backelin-West-Xin and Jelínek, and provides an extension of work of Gouyou-Beauchamps for matchings with fixed points. Finally, we classify pairs of patterns of length 3 according to shape-Wilf-equivalence, and enumerate matchings and partitions avoiding a pair in most of the resulting equivalence classes.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lily Yen

International audience The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for matchings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric joint distribution continues to hold for arc-coloured permutations. As in Marberg's recent work, but through a different interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured permutations according to size n are rational functions. We use the interpretation to automate the generation of these rational series for both noncrossing and nonnesting coloured set partitions and permutations. <begin>otherlanguage*</begin>french L'équidistribution de plusieurs statistiques décrites en termes d'emboitements et de chevauchements d'arcs s'observes dans plusieurs familles d'objects combinatoires, tels que les couplages, partitions d'ensembles, permutations et graphes étiquetés. L'involution échangeant le nombre d'emboitements et de chevauchements dans les partitions d'ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l'involution similaire dans les permutations due à Burrill, Mishna et Post, requièrent d'utiliser des objets de type tableaux. Récemment, Chen et Guo pour les couplages, et Marberg pour les partitions d'ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés coloriés. Nous démontrons que la propriété d'équidistribution s'observe est aussi vraie dans le cas de permutations aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements, comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calculer ces fonctions rationnelles pour les partitions d'ensembles et les permutations coloriées sans emboitement ou sans chevauchement. <end>otherlanguage*</end>


2018 ◽  
Vol 12 (2) ◽  
pp. 413-438 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

In this paper, we consider statistics on compositions and set partitions represented geometrically as bargraphs. By a water cell, we mean a unit square exterior to a bargraph that lies along a horizontal line between any two squares contained within the area subtended by the bargraph. That is, if a large amount of a liquid were poured onto the bargraph from above and allowed to drain freely, then the water cells are precisely those cells where the liquid would collect. In this paper, we count both compositions and set partitions according to the number of descents and water cells in their bargraph representations and determine generating function formulas for the joint distributions on the respective structures. Comparable generating functions that count non-crossing and non-nesting partitions are also found. Finally, we determine explicit formulas for the sign balance and for the first moment of the water cell statistic on set partitions, providing both algebraic and combinatorial proofs.


2010 ◽  
Vol 4 (2) ◽  
pp. 284-308 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Stephan Wagner

A partition ? of the set [n] = {1, 2,...,n} is a collection {B1,...,Bk} of nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. Suppose that the subsets Bi are listed in increasing order of their minimal elements and ? = ?1, ?2...?n denotes the canonical sequential form of a partition of [n] in which iEB?i for each i. In this paper, we study the generating functions corresponding to statistics on the set of partitions of [n] with k blocks which record the total number of positions of ? between adjacent occurrences of a letter. Among our results are explicit formulas for the total value of the statistics over all the partitions in question, for which we provide both algebraic and combinatorial proofs. In addition, we supply asymptotic estimates of these formulas, the proofs of which entail approximating the size of certain sums involving the Stirling numbers. Finally, we obtain comparable results for statistics on partitions which record the total number of positions of ? of the same letter lying between two letters which are strictly larger.


10.37236/4080 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Lily Yen

Symmetric joint distribution between crossings and nestings was established in several combinatorial objects. Recently, Marberg extended Chen and Guo's result on coloured matchings to coloured set partitions following a multi-dimensional generalization of the bijection and enumerative methods from Chen, Deng, Du, Stanley, and Yan. We complete the study for arc-coloured permutations by establishing symmetric joint distribution for crossings and nestings and by showing that the ordinary generating functions for $j$-noncrossing, $k$-nonnesting, $r$-coloured permutations according to size $n$ are rational functions. Finally, we automate the generation of these rational functions and analyse the first $70$ series.


10.37236/381 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Arnold Knopfmacher ◽  
Toufik Mansour ◽  
Stephan Wagner

A partition of $[n]=\{1,2,\ldots,n\}$ is a decomposition of $[n]$ into nonempty subsets called blocks. We will make use of the canonical representation of a partition as a word over a finite alphabet, known as a restricted growth function. An element $a_i$ in such a word $\pi$ is a strong (weak) record if $a_i> a_j$ ($a_i\geq a_j$) for all $j=1,2,\ldots,i-1$. Furthermore, the position of this record is $i$. We derive generating functions for the total number of strong (weak) records in all words corresponding to partitions of $[n]$, as well as for the sum of the positions of the records. In addition we find the asymptotic mean values and variances for the number, and for the sum of positions, of strong (weak) records in all partitions of $[n]$.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sophie Burrill ◽  
Sergi Elizalde ◽  
Marni Mishna ◽  
Lily Yen

International audience We describe a generating tree approach to the enumeration and exhaustive generation of k-nonnesting set partitions and permutations. Unlike previous work in the literature using the connections of these objects to Young tableaux and restricted lattice walks, our approach deals directly with partition and permutation diagrams. We provide explicit functional equations for the generating functions, with k as a parameter. Nous décrivons une approche, basée sur l'utilisation d'arbres de génération, pour énumération et la génération exhaustive de partitions et permutations sans k-emboîtement. Contrairement aux travaux antérieurs qui reposent sur un lien entre ces objets, tableaux de Young et familles de chemins dans des treillis, notre approche traite directement partitions et diagrammes de permutations. Nous fournissons des équations fonctionnelles explicites pour les séries génératrices, avec k en tant que paramètre.


2020 ◽  
Vol 14 (1) ◽  
pp. 221-238
Author(s):  
Toufik Mansour ◽  
Gökhan Yıldırım

We study the enumeration of bargraphs with respect to some corner statistics. We find generating functions for the number of bargraphs that track the corner statistics of interest, the number of cells, and the number of columns. We also consider bargraph representation of set partitions and obtain some explicit formulas for the number of specific types of corners in such representations.


10.37236/1837 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
J. B. Remmel ◽  
Michelle L. Wachs

In this paper, we define two natural $(p,q)$-analogues of the generalized Stirling numbers of the first and second kind $S^1(\alpha,\beta,r)$ and $S^2(\alpha,\beta,r)$ as introduced by Hsu and Shiue [Adv. in Appl. Math. 20 (1998), 366–384]. We show that in the case where $\beta =0$ and $\alpha$ and $r$ are nonnegative integers both of our $(p,q)$-analogues have natural interpretations in terms of rook theory and derive a number of generating functions for them. We also show how our $(p,q)$-analogues of the generalized Stirling numbers of the second kind can be interpreted in terms of colored set partitions and colored restricted growth functions. Finally we show that our $(p,q)$-analogues of the generalized Stirling numbers of the first kind can be interpreted in terms of colored permutations and how they can be related to generating functions of permutations and signed permutations according to certain natural statistics.


Sign in / Sign up

Export Citation Format

Share Document