scholarly journals Crossings and Nestings for Arc-Coloured Permutations and Automation

10.37236/4080 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Lily Yen

Symmetric joint distribution between crossings and nestings was established in several combinatorial objects. Recently, Marberg extended Chen and Guo's result on coloured matchings to coloured set partitions following a multi-dimensional generalization of the bijection and enumerative methods from Chen, Deng, Du, Stanley, and Yan. We complete the study for arc-coloured permutations by establishing symmetric joint distribution for crossings and nestings and by showing that the ordinary generating functions for $j$-noncrossing, $k$-nonnesting, $r$-coloured permutations according to size $n$ are rational functions. Finally, we automate the generation of these rational functions and analyse the first $70$ series.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lily Yen

International audience The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for matchings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric joint distribution continues to hold for arc-coloured permutations. As in Marberg's recent work, but through a different interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured permutations according to size n are rational functions. We use the interpretation to automate the generation of these rational series for both noncrossing and nonnesting coloured set partitions and permutations. <begin>otherlanguage*</begin>french L'équidistribution de plusieurs statistiques décrites en termes d'emboitements et de chevauchements d'arcs s'observes dans plusieurs familles d'objects combinatoires, tels que les couplages, partitions d'ensembles, permutations et graphes étiquetés. L'involution échangeant le nombre d'emboitements et de chevauchements dans les partitions d'ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l'involution similaire dans les permutations due à Burrill, Mishna et Post, requièrent d'utiliser des objets de type tableaux. Récemment, Chen et Guo pour les couplages, et Marberg pour les partitions d'ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés coloriés. Nous démontrons que la propriété d'équidistribution s'observe est aussi vraie dans le cas de permutations aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements, comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calculer ces fonctions rationnelles pour les partitions d'ensembles et les permutations coloriées sans emboitement ou sans chevauchement. <end>otherlanguage*</end>


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mark Dukes ◽  
Yvan Le Borgne

International audience We give a polyomino characterisation of recurrent configurations of the sandpile model on the complete bipartite graph $K_{m,n}$ in which one designated vertex is the sink. We present a bijection from these recurrent configurations to decorated parallelogram polyominoes whose bounding box is a $m×n$ rectangle. Other combinatorial structures appear in special cases of this correspondence: for example bicomposition matrices (a matrix analogue of set partitions), and (2+2)-free posets. A canonical toppling process for recurrent configurations gives rise to a path within the associated parallelogram polyominoes. We define a collection of polynomials that we call $q,t$-Narayana polynomials, the generating functions of the bistatistic $(\mathsf{area ,parabounce} )$ on the set of parallelogram polyominoes, akin to Haglund's $(\mathsf{area ,hagbounce} )$ bistatistic on Dyck paths. In doing so, we have extended a bistatistic of Egge et al. to the set of parallelogram polyominoes. This is one answer to their question concerning extensions to other combinatorial objects. We conjecture the $q,t$-Narayana polynomials to be symmetric and discuss the proofs for numerous special cases. We also show a relationship between the $q,t$-Catalan polynomials and our bistatistic $(\mathsf{area ,parabounce}) $on a subset of parallelogram polyominoes. Pour le modèle du tas de sable sur un graphe $K_m,n$ biparti complet, on donne une description des configurations rècurrentes à l'aide d'une bijection avec des polyominos parallèlogrammes dècorès de rectangle englobant $m×n$. D'autres classes combinatoires apparaissent comme des cas particuliers de cette construction: par exemple les matrices de bicomposition et les ordres partiels évitant le motif (2+2). Un processus d'éboulement canonique des configurations récurrentes se traduit par un chemin bondissant dans le polyomino parallèlogramme associè. Nous définissons une famille de polynômes, baptisée de $q,t$-Narayana, à travers la distribution d'une paire de statistique $(\mathsf{aire, poidscheminbondissant})$ sur les polyominos parallélogrammes similaire à celle de Haglund définissant les polynômes de $q,t$-Catalan sur les chemins de Dyck. Ainsi nous étendons une paire de statistique de Egge et d'autres à l'ensemble des polynominos parallélogrammes. Cela répond à l'une de leur question sur des généralistations à d'autres objets combinatoires. Nous conjecturons que les polynômes de $q,t$-Narayana sont symétriques et discutons des preuves de plusieurs cas particuliers. Nous montrons ègalement une relation avec les polynômes de $q,t$-Catalan en restreignant notre paire de statistique à un sous-ensemble des polyominos parallélogrammes.


Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6229-6237 ◽  
Author(s):  
Nenad Cakic ◽  
Toufik Mansour ◽  
Rebecca Smith

In this paper, we study the generating functions for the number of visible levels in compositions of n and set partitions of [n].


1993 ◽  
Vol 7 (4) ◽  
pp. 471-493 ◽  
Author(s):  
O. J. Boxma ◽  
G. J. van Houtum

In this paper we analyze an asymmetric 2 × 2 buffered switch, fed by two independent Bernoulli input streams. We derive the joint equilibrium distribution of the numbers of messages waiting in the two output buffers. This joint distribution is presented explicitly, without the use of generating functions, in the form of a sum of two alternating series of product-form geometric distributions. The method used is the so-called compensation approach, developed by Adan, Wessels, and Zijm.


1985 ◽  
Vol 97 (3) ◽  
pp. 515-524 ◽  
Author(s):  
Peter Clifford ◽  
N. J. B. Green

AbstractThe joint distribution of the n(n− l)/2 distances between n normally distributed points in d dimensions is studied. Moment generating functions and probability density functions are obtained. It is shown that when n = d the squared distances are jointly exponentially distributed subject only to the constraint that a valid n point configuration is prescribed. In the case n = d = 3 the distributions of the ordered distance are obtained explicitly.


1997 ◽  
Vol 6 (1) ◽  
pp. 87-105 ◽  
Author(s):  
DUDLEY STARK

Assemblies are labelled combinatorial objects that can be decomposed into components. Examples of assemblies include set partitions, permutations and random mappings. In addition, a distribution from population genetics called the Ewens sampling formula may be treated as an assembly. Each assembly has a size n, and the sum of the sizes of the components sums to n. When the uniform distribution is put on all assemblies of size n, the process of component counts is equal in distribution to a process of independent Poisson variables Zi conditioned on the event that a weighted sum of the independent variables is equal to n. Logarithmic assemblies are assemblies characterized by some θ > 0 for which i[ ]Zi → θ. Permutations and random mappings are logarithmic assemblies; set partitions are not a logarithmic assembly. Suppose b = b(n) is a sequence of positive integers for which b/n → β ε (0, 1]. For logarithmic assemblies, the total variation distance db(n) between the laws of the first b coordinates of the component counting process and of the first b coordinates of the independent processes converges to a constant H(β). An explicit formula for H(β) is given for β ε (0, 1] in terms of a limit process which depends only on the parameter θ. Also, it is shown that db(n) → 0 if and only if b/n → 0, generalizing results of Arratia, Barbour and Tavaré for the Ewens sampling formula. Local limit theorems for weighted sums of the Zi are used to prove these results.


2002 ◽  
Vol 16 (09) ◽  
pp. 1269-1299 ◽  
Author(s):  
A. C. OPPENHEIM ◽  
R. BRAK ◽  
A. L. OWCZAREK

We present results for the generating functions of single fully-directed walks on the triangular lattice, enumerated according to each type of step and weighted proportional to the area between the walk and the surface of a half-plane (wall), and the number of contacts made with the wall. We also give explicit formulae for total area generating functions, that is when the area is summed over all configurations with a given perimeter, and the generating function of the moments of heights above the wall (the first of which is the total area). These results generalise and summarise nearly all known results on the square lattice: all the square lattice results can be obtaining by setting one of the step weights to zero. Our results also contain as special cases those that already exist for the triangular lattice. In deriving some of the new results we utilise the Enumerating Combinatorial Objects (ECO) and marked area methods of combinatorics for obtaining functional equations in the most general cases. In several cases we give our results both in terms of ratios of infinite q-series and as continued fractions.


10.37236/1059 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Anisse Kasraoui ◽  
Jiang Zeng

We construct an involution on set partitions which keeps track of the numbers of crossings, nestings and alignments of two edges. We derive then the symmetric distribution of the numbers of crossings and nestings in partitions, which generalizes a recent result of Klazar and Noy in perfect matchings. By factorizing our involution through bijections between set partitions and some path diagrams we obtain the continued fraction expansions of the corresponding ordinary generating functions.


10.37236/2976 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize $3$-crossings and $3$-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards.We enumerate $312$-avoiding matchings and partitions, obtaining algebraic generating functions, in contrast with the known D-finite generating functions for the $321$-avoiding (i.e., $3$-noncrossing) case. Our approach provides a more direct proof of a formula of Bóna for the number of $1342$-avoiding permutations. We also give a bijective proof of the shape-Wilf-equivalence of the patterns $321$ and $213$ which greatly simplifies existing proofs by Backelin-West-Xin and Jelínek, and provides an extension of work of Gouyou-Beauchamps for matchings with fixed points. Finally, we classify pairs of patterns of length 3 according to shape-Wilf-equivalence, and enumerate matchings and partitions avoiding a pair in most of the resulting equivalence classes.


2018 ◽  
Vol 12 (2) ◽  
pp. 413-438 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

In this paper, we consider statistics on compositions and set partitions represented geometrically as bargraphs. By a water cell, we mean a unit square exterior to a bargraph that lies along a horizontal line between any two squares contained within the area subtended by the bargraph. That is, if a large amount of a liquid were poured onto the bargraph from above and allowed to drain freely, then the water cells are precisely those cells where the liquid would collect. In this paper, we count both compositions and set partitions according to the number of descents and water cells in their bargraph representations and determine generating function formulas for the joint distributions on the respective structures. Comparable generating functions that count non-crossing and non-nesting partitions are also found. Finally, we determine explicit formulas for the sign balance and for the first moment of the water cell statistic on set partitions, providing both algebraic and combinatorial proofs.


Sign in / Sign up

Export Citation Format

Share Document