scholarly journals Enumerating set partitions by the number of positions between adjacent occurrences of a letter

2010 ◽  
Vol 4 (2) ◽  
pp. 284-308 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Stephan Wagner

A partition ? of the set [n] = {1, 2,...,n} is a collection {B1,...,Bk} of nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. Suppose that the subsets Bi are listed in increasing order of their minimal elements and ? = ?1, ?2...?n denotes the canonical sequential form of a partition of [n] in which iEB?i for each i. In this paper, we study the generating functions corresponding to statistics on the set of partitions of [n] with k blocks which record the total number of positions of ? between adjacent occurrences of a letter. Among our results are explicit formulas for the total value of the statistics over all the partitions in question, for which we provide both algebraic and combinatorial proofs. In addition, we supply asymptotic estimates of these formulas, the proofs of which entail approximating the size of certain sums involving the Stirling numbers. Finally, we obtain comparable results for statistics on partitions which record the total number of positions of ? of the same letter lying between two letters which are strictly larger.

Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 931-943 ◽  
Author(s):  
B. El-Desouky ◽  
F.A. Shiha ◽  
Ethar Shokr

In this paper, we define the multiparameter r-Whitney numbers of the first and second kind. The recurrence relations, generating functions , explicit formulas of these numbers and some combinatorial identities are derived. Some relations between these numbers and generalized Stirling numbers of the first and second kind, Lah numbers, C-numbers and harmonic numbers are deduced. Furthermore, some interesting special cases are given. Finally matrix representation for these relations are given.


2018 ◽  
Vol 12 (2) ◽  
pp. 413-438 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

In this paper, we consider statistics on compositions and set partitions represented geometrically as bargraphs. By a water cell, we mean a unit square exterior to a bargraph that lies along a horizontal line between any two squares contained within the area subtended by the bargraph. That is, if a large amount of a liquid were poured onto the bargraph from above and allowed to drain freely, then the water cells are precisely those cells where the liquid would collect. In this paper, we count both compositions and set partitions according to the number of descents and water cells in their bargraph representations and determine generating function formulas for the joint distributions on the respective structures. Comparable generating functions that count non-crossing and non-nesting partitions are also found. Finally, we determine explicit formulas for the sign balance and for the first moment of the water cell statistic on set partitions, providing both algebraic and combinatorial proofs.


2020 ◽  
Vol 14 (1) ◽  
pp. 221-238
Author(s):  
Toufik Mansour ◽  
Gökhan Yıldırım

We study the enumeration of bargraphs with respect to some corner statistics. We find generating functions for the number of bargraphs that track the corner statistics of interest, the number of cells, and the number of columns. We also consider bargraph representation of set partitions and obtain some explicit formulas for the number of specific types of corners in such representations.


10.37236/1837 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
J. B. Remmel ◽  
Michelle L. Wachs

In this paper, we define two natural $(p,q)$-analogues of the generalized Stirling numbers of the first and second kind $S^1(\alpha,\beta,r)$ and $S^2(\alpha,\beta,r)$ as introduced by Hsu and Shiue [Adv. in Appl. Math. 20 (1998), 366–384]. We show that in the case where $\beta =0$ and $\alpha$ and $r$ are nonnegative integers both of our $(p,q)$-analogues have natural interpretations in terms of rook theory and derive a number of generating functions for them. We also show how our $(p,q)$-analogues of the generalized Stirling numbers of the second kind can be interpreted in terms of colored set partitions and colored restricted growth functions. Finally we show that our $(p,q)$-analogues of the generalized Stirling numbers of the first kind can be interpreted in terms of colored permutations and how they can be related to generating functions of permutations and signed permutations according to certain natural statistics.


2022 ◽  
Vol 7 (2) ◽  
pp. 2929-2939
Author(s):  
Hye Kyung Kim ◽  

<abstract><p>The $ r $-Lah numbers generalize the Lah numbers to the $ r $-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The $ r $-Lah number counts the number of partitions of a set with $ n+r $ elements into $ k+r $ ordered blocks such that $ r $ distinguished elements have to be in distinct ordered blocks. In this paper, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers ($ r\in \mathbb{N} $) are introduced parallel to the $ r $-extended central factorial numbers of the second kind and $ r $-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.</p></abstract>


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Thomas G. Mertens ◽  
Gustavo J. Turiaci

Abstract We study two-dimensional Liouville gravity and minimal string theory on spaces with fixed length boundaries. We find explicit formulas describing the gravitational dressing of bulk and boundary correlators in the disk. Their structure has a striking resemblance with observables in 2d BF (plus a boundary term), associated to a quantum deformation of SL(2, ℝ), a connection we develop in some detail. For the case of the (2, p) minimal string theory, we compare and match the results from the continuum approach with a matrix model calculation, and verify that in the large p limit the correlators match with Jackiw-Teitelboim gravity. We consider multi-boundary amplitudes that we write in terms of gluing bulk one-point functions using a quantum deformation of the Weil-Petersson volumes and gluing measures. Generating functions for genus zero Weil-Petersson volumes are derived, taking the large p limit. Finally, we present preliminary evidence that the bulk theory can be interpreted as a 2d dilaton gravity model with a sinh Φ dilaton potential.


2019 ◽  
Vol 234 (5) ◽  
pp. 291-299
Author(s):  
Anton Shutov ◽  
Andrey Maleev

Abstract A new approach to the problem of coordination sequences of periodic structures is proposed. It is based on the concept of layer-by-layer growth and on the study of geodesics in periodic graphs. We represent coordination numbers as sums of so called sector coordination numbers arising from the growth polygon of the graph. In each sector we obtain a canonical form of the geodesic chains and reduce the calculation of the sector coordination numbers to solution of the linear Diophantine equations. The approach is illustrated by the example of the 2-homogeneous kra graph. We obtain three alternative descriptions of the coordination sequences: explicit formulas, generating functions and recurrent relations.


Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6229-6237 ◽  
Author(s):  
Nenad Cakic ◽  
Toufik Mansour ◽  
Rebecca Smith

In this paper, we study the generating functions for the number of visible levels in compositions of n and set partitions of [n].


Sign in / Sign up

Export Citation Format

Share Document