scholarly journals Complexometric determination: Part I - EDTA and complex formation with the Cu2+ ion

2002 ◽  
Vol 56 (7-8) ◽  
pp. 338-345 ◽  
Author(s):  
Milos Rajkovic

Compounds forming very stable complexes - chelates, have a wide field of application in analytical chemistry. The most famous group of these compounds are complexons. Complexons represent organic polyaminocarbonic acids as for example ethylenediaminetetraacetic acid (EDTA) and its salts. The EDTA molecule has six coordinative sites. It is a hexadentate ligands i.e. it has two binding nitrogen atoms and four oxygen atoms from carboxyl groups and it forms complexes with almost all metal ions. EDTA as a tetraprotonic acid, H4Y disociates through four steps, yielding the ions HsY-, H2Y2-, HY3- and Y4-. Which of the EDTA forms will be encountered in a solution, depends on the pH. Due to the poor solubility of EDTA in pure water, as well as in most organic solvents, the disodium salt of EDTA Na2H2Y-2H2O, under the commercial name complexon III, is utilized for analytical determinations. In water, EDTA forms soluble, stabile chelate complexes with all cations, at the molar ratio 1:1, regardless of the charge of the metal ion. In contrast to other equilibria, which are mainly defined by Le Chatellier's principle, equilibria related to metal-EDTA complex formation are also dependent on the influence of the secondary equilibria of EDTA complex formation. Complexing reactions, which are equilibrium reactions, are simultaneously influenced by the following factors: solution pH and the presence of complexing agents which may also form a stabile complex with metal ions. The secondary reaction influence may be viewed and monitored through conditional stability constants. In the first part of the paper, the reaction of the formation of the Cu2+-ion complex with EDTA is analyzed beginning from the main reaction through various influences of secondary reactions on the complex Cu2+-EDTA: pH effect, complexation effect and hydrolysis effect. The equations are given for conditional stability constants, which include equilibrium reactions under actual conditions.

1962 ◽  
Vol 15 (3) ◽  
pp. 457 ◽  
Author(s):  
HJ de Bruin ◽  
D Kairaitis ◽  
RB Temple

The extraction of beryllium from aqueous solution by long-chain tertiary amines has been observed in the presence of ligands giving rise to anionic complexes. The nature of the oxalate complex extracted by solutions of tri-iso-octylamine in chloroform has been studied in detail and the species formed in the organic phase were shown to have the composition Be(C2O4)2.{NH(i-C8H15)3}2. The complexes formed in aqueous solution between beryllium and several anionic complexing agents have been examined by the method of pH-titration. Conditional stability constants have been obtained for the complexes formed with oxalic, malonic, maleic, succinic, phthalic, and salicylic acids. Differences in their extractabilities can be explained semiquantitatively with the help of the stability constants and the acid association constants of the complexing agents.


1988 ◽  
Vol 22 (11) ◽  
pp. 1381-1388 ◽  
Author(s):  
Jan John ◽  
Brit Salbu ◽  
Egil T. Gjessing ◽  
Helge E. Bjørnstad

1963 ◽  
Vol 16 (3) ◽  
pp. 376
Author(s):  
HJ de Bruin ◽  
JJ Fardy ◽  
RB Temple

The beryllium/salicylate system has been re-examined by ion-exchange procedures. The results appear to confirm the existence of a neutral 1 : 1 and an anionic 1 : 2 complex, in both of which the salicylate radicals form chelate rings. Conditional stability constants have been measured at 25�C at an ionic strength of 0.15, the values obtained being ������������� β1 = 4.97 x 1012, and β2 = 2.63 x 1022.


Sign in / Sign up

Export Citation Format

Share Document