scholarly journals Experimental and numerical analyses of an U-bend tube made of an output inter-heater tube after exploitation

2020 ◽  
Vol 74 (1) ◽  
pp. 51-63
Author(s):  
Vladimir Pavkov ◽  
Gordana Bakic ◽  
Vesna Maksimovic ◽  
Aleksandar Petrovic ◽  
Nenad Mitrovic ◽  
...  

One of the important tasks of evaluating the integrity of mechanical process elements and structures is to determine the local mechanical properties. In this paper, experimental and numerical analyses of the mechanical behavior of an output inter-heater tube, made of 12H1MF heat-resistant steel, was performed after 200,000 h of exploitation. During exploitation, the tube was exposed to various mechanisms of damage including gas corrosion. The tube was cut from a pipe system during reparations of a thermal power plant, and then cold-deformed by bending to obtain a U-bend tube, which was then used in the experiment. For this purpose, a specimen holder made of structural steel S235 was specifically designed to test such a sample. The U-bend tube was then exposed to the external compressive load during the experiment. Experimental research was based on the application of the 3D digital image correlation (DIC), while a finite element method (FEM) was applied in numerical simulation performed by using the Abaqus software package. The 3D DIC is an optical and contactless experimental method that allows measurements of displacement fields and deformations of geometrically complex structures. The Aramis system was used for the experimental analysis as well as for verification of the numerical model. During the experiment, the von Mises strain field was measured at the top of the U-bend tube, in the tightening zone, as it represents a critical place for crack initiation and propagation during the work of an inter-heater. Based on the obtained results and a comparative analysis of experimental and numerical values of the von Mises strain field at the U-bend tube, deviation of the model predictions of about 18 % was determined. The FEM predicted smaller values of the von Mises strain field compared to the DIC method. This is the result of an incomplete geometry applied in the model due to deformation that occurred in the bend zone of the U-bend tube, loss of material and the tube surface damage due to the influence of gas corrosion during 200,000 h of exploitation. Experimental analysis has confirmed that the U-bend tube, after 200,000 h of exploitation, can remain in service even if it is damaged due to the effect of gas corrosion.

2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


2017 ◽  
Vol 8 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Jorge Barrios-Muriel ◽  
Francisco Javier Alonso Sánchez ◽  
David Rodríguez Salgado ◽  
Francisco Romero-Sánchez

Abstract. Today there is continuous development of wearable devices in various fields such as sportswear, orthotics and personal gadgets, among others. The design of these devices involves the human body as a support environment. Based on this premise, the development of wearable devices requires an improved understanding of the skin strain field of the body segment during human motion. This paper presents a methodology based on a three dimensional digital image correlation (3D-DIC) system to measure the skin strain field and to estimate anatomical lines with minimum deformation as design criteria for the aforementioned wearable devices. The errors of displacement and strain measurement related to 3-D reconstruction and out-of-plane motion are investigated and the results are acceptable in the case of large deformation. This approach can be an effective tool to improve the design of wearable devices in the clinical orthopaedics and ergonomics fields, where comfort plays a key role in supporting the rehabilitation process.


Solid Earth ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 943-953 ◽  
Author(s):  
Thomas Chauve ◽  
Maurine Montagnat ◽  
Cedric Lachaud ◽  
David Georges ◽  
Pierre Vacher

Abstract. This paper presents, for the first time, the evolution of the local heterogeneous strain field around intra-granular cracking in polycrystalline ice, at the onset of tertiary creep. Owing to the high homologous temperature conditions and relatively low compressive stress applied, stress concentration at the crack tips is relaxed by plastic mechanisms associated with dynamic recrystallization. Strain field evolution followed by digital image correlation (DIC) directly shows the redistribution of strain during crack opening, but also the redistribution driven by crack tip plasticity mechanisms and recrystallization. Associated local changes in microstructure induce modifications of the local stress field evidenced by crack closure during deformation. At the ductile-to-brittle transition in ice, micro-cracking and dynamic recrystallization mechanisms can co-exist and interact, the later being efficient to relax stress concentration at the crack tips.


Author(s):  
Elias Ledesma ◽  
Eduardo Aguilera ◽  
Gilberto Villalobos

An experimental study and a numerical simulation of friction stir welding (FSW) process on aluminum 6064 plates is presented. The numerical analysis is performed using finite element technique with LsDyna software and the Aleatory Lagrangian Eulerian (ALE) formulation. Input parameters on the FEM are the mechanical properties of the aluminum 6064 as workpiece and H13 steel properties as the tool. The finite element analysis results shown Von Mises stresses and plastic strain developed during the process. An experimental analysis was conducted with the variation of process parameters and the specimens obtained were evaluated by x-ray inspection, tensile tests, and hardness measurements.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2958-2963
Author(s):  
MING SONG ◽  
GUANGJIE MAO ◽  
YUE MA ◽  
SHENGKAI GONG

Practical residual strain field around the microcrack tip of fully lamellar γ- TiAl alloy was estimate the by digital image correlation (DIC) technology with in-situ SEM observation. And the macro plastic deformation before fracture of such low ductility alloys was observed. The results showed that the size of plastic zone around microcrack tip was 2 ~ 10µ m which was much more smaller than the calculated value by fracture mechanics. During the magnified observation on the plastic deformation region, a series of microcracks were observed in the specimen without macro cracking. Furthermore, the size of distribution region of the microcracks were in the same order of magnitude with the calculated plastic zone near primary crack tip which just reflected the comprehensive effect of microcracks and the plastic deformation on the tips of them.


2020 ◽  
Vol 88 (1) ◽  
Author(s):  
Martin Scales ◽  
Kelin Chen ◽  
Stelios Kyriakides

Abstract The inelastic response and failure of Al-6061-T6 tubes under combined internal pressure and tension is investigated as part of a broader study of ductile failure of Al-alloys. A custom experimental setup is used to load thin-walled tubes to failure under radial paths in the axial-hoop stress space. All loading paths achieve nominal stress maxima beyond which deformation localizes into a narrow band. 3D digital image correlation (DIC) was used to monitor the deformations in the test section and successfully captured the rapid growth of strain within the localization bands where they burst. The biaxial stress states generated are first used to calibrate the nonquadratic anisotropic Yld04-3D yield function (Barlat et al., 2005, “Linear Transformation-based Anisotropic Yield Functions,” Int. J. Plasticity, 21(5), pp. 1009–1039). The constitutive model is then incorporated through a UMAT into a finite element analysis and used to simulate numerically the experiments. The same calculations were performed using von Mises (VM) and an isotropic nonquadratic yield function. The material hardening responses adopted were extracted for each constitutive model from the necked zone of a tensile test using an inverse method. The use of solid elements captures the evolution of local deformation deep into the localizing part of the response, producing strain levels that are required in the application of failure criteria. The results demonstrate that the adoption of a nonquadratic yield function, together with a correct material hardening response are essential for large deformation predictions in localizing zones in Al-alloys. Including the anisotropy in such a constitutive model produces results that are closest to the experiments.


Sign in / Sign up

Export Citation Format

Share Document