scholarly journals Influence of mechanical activation and heat treatment on magnetic properties of nanostructured mixture Ni85.8Fe10.6Cu2.2W1.4

2019 ◽  
Vol 55 (1) ◽  
pp. 85-93 ◽  
Author(s):  
M.M. Vasic ◽  
A.S. Kalezic-Glisovic ◽  
R. Milincic ◽  
Lj. Radovic ◽  
D.M. Minic ◽  
...  

The mechanical activation of the Ni85.8Fe10.6Cu2.2W1.4 powder mixture in the time intervals of 30-210 min in combination with thermal treatment at 393-873 K resulted in microstructural changes, forming the nanostructured mixture of the same composition but improved magnetic properties. The best result were achieved for mechanical activation during 120 min and thermal treatment at temperatures close to the Curie temperature (693K), enhancing the mass magnetization of the starting powder mixture by about 57%. The microstructural changes, which include the structural relaxation, decrease in free volume, density of dislocation and microstrain, improve structural characteristics of material, enabling better mobility of walls of magnetic domains and their better orientation in applied magnetic field and consequently enabling better mass magnetization of the material. With longer time of milling, the growing stress introduced in the sample undergoes easier relief, relocating stress-relieving processes toward lower temperatures.

2016 ◽  
Vol 61 (2) ◽  
pp. 869-874 ◽  
Author(s):  
E. Jartych ◽  
T. Pikula ◽  
M. Mazurek ◽  
W. Franus ◽  
A. Lisinska-Czekaj ◽  
...  

Abstract Three different methods were used to obtain Bi5Ti3FeO15 ceramics, i.e. solid-state sintering, mechanical activation (MA) with subsequent thermal treatment, and electrical discharge assisted mechanical milling (EDAMM). The structure and magnetic properties of produced Bi5Ti3FeO15 samples were characterized using X-ray diffraction and Mössbauer spectroscopy. The purest Bi5Ti3FeO15 ceramics was obtained by standard solid-state sintering method. Mechanical milling methods are attractive because the Bi5Ti3FeO15 compound may be formed at lower temperature or without subsequent thermal treatment. In the case of EDAMM process also the time of processing is significantly shorter in comparison with solid-state sintering method. As revealed by Mössbauer spectroscopy, at room temperature the Bi5Ti3FeO15 ceramics produced by various methods is in paramagnetic state.


1999 ◽  
Vol 577 ◽  
Author(s):  
Q. Chen ◽  
B. M. Ma ◽  
B. Lu ◽  
M. Q. Huang ◽  
D. E. Laughlin

ABSTRACTThe phase transformation and the exchange coupling in (Ndo095Lao005)9.5FebaICOsNb 2BI05 have been investigated. Nanocomposites were obtained by treating amorphous precursors at temperatures ranging from 650TC to 9500C for 10 minutes. The magnetic properties were characterized via the vibrating sample magnetometer (VSM). X-ray diffraction (XRD), thermomagnetic analysis (TMA), and transmission electron microscopy (TEM) were used to perform phase identification, measure grain size, and analyze phase distribution. The strength of the exchange coupling between the magnetically hard and soft phases in the corresponding nanocomposite was analyzed via the AM-versus-H plot. It was found that the remanence (Br), coercivity (Hci), and maximum energy product (BHmax) obtained were affected by the magnetic phases present as well as the grain size of constituent phases and their distribution. The optimal magnetic performance, BHm, occurred between 700°C to 750°C, where the crystallization has completed without excessive grain growth. TMA and TEM indicated that the system was composed of three phases at this point, Nd2(Fe Co) 14B, ca-Fe, and Fe3B. The exchange coupling interaction among these phases was consistently described via the AM-versus-H plot up to 750°C. The Br, Hci, and BHmax degraded severely when the thermal treatment temperature increased from 750°C. This degradation may be attributed to the grain growth of the main phases, from 45 to 68nm, and the development of precipitates, which grew from 5nm at 750°C to 12nm at 850°C. Moreover, the amount of the precipitates was found to increase with the thermal treatment temperatures. The precipitates, presumably borides, may cause a decrease in the amount of the a-Fe and Fe 3B and result in a redistribution of the Co in the nanocomposites. The increase of the Co content in the Nd 2(Fe Co) 14B may explain the increase of its Curie temperature with the thermal treatment temperatures. In this paper, we examine the impacts of these factors on the magnetic properties of (Ndo 95Lao 05)9 5FebaICosNb2B10.5 nanocomposite.


Author(s):  
S. P. Kubrin ◽  
I. P. Raevski ◽  
V. V. Stashenko ◽  
A. A. Gusev ◽  
V. P. Isupov ◽  
...  

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Roshini Prakash ◽  
Maribeth Johnson ◽  
Susan C Fagan ◽  
Adviye Ergul

We previously reported intense pial cerebral collateralization and arteriogenesis in a mild and lean model of type 2 diabetes, Goto-Kakizaki (GK) rats. Further 3-dimensional fluroscein (FITC) imaging studies revealed regional differences in increased cerebral neovascularization which was associated with poor vessel wall maturity. Building upon these findings, the goals of this study were a) to compare and contrast this pathological neovascularization pattern in db/db mice and GK models of diabetes, and b) determine the effect of glycemic control on erratic cerebral neovascularization. Total vascular volume, density and surface area as well as structural parameters including microvessel/macrovessel ratio, non-FITC perfusing vessel abundance, penetrating arteriole (PA) branching density and diameter, and tortuosity were measured by 3 dimensional reconstruction of FITC stained vasculature using Z-stacked images obtained with confocal microscopy. Lean GK rats exhibited an increase in both micro and macrovessel density, non-perfusing vessel abundance, branch density, diameter and tortuosity. Glycemic control with metformin prevented these changes. Obese db/db mice, on the other hand, showed an increase in only microvascular density but this was not associated with an increase in non-FITC perfusing vessels. PA branch density was higher than controls but branch diameter was reduced. Diabetes also promoted astrogliosis. These results suggests that type 2 diabetes leads to cerebral neovascularization and remodeling but structural characteristics of newly formed vessels differ between lean and obese models that have mild or severe hyperglycemia, respectively. The prevention of dysfunctional cerebral neovascularization by early glucose control suggests that hyperglycemia is a mediator of this response. N=4-8 * p≤ 0.05, ** p≤ 0.005 *** 0.0005


2020 ◽  
Vol 513 ◽  
pp. 167204
Author(s):  
Sri Mulyaningsih ◽  
Bastian Klemke ◽  
Konrad Siemensmeyer ◽  
Mathias Fritz ◽  
Mario Kurniawan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document