scholarly journals Quantitative analysis of ibuprofen in pharmaceuticals and human control serum using kinetic spectrophotometry

2008 ◽  
Vol 73 (8-9) ◽  
pp. 879-890 ◽  
Author(s):  
Snezana Mitic ◽  
Gordana Miletic ◽  
Aleksandra Pavlovic ◽  
Biljana Arsic ◽  
Valentina Zivanovic

The aim of this work was to develop a new kinetic spectrophotometric method for the determination of ibuprofen in pharmaceutical formulations. Ibuprofen was determined in an acidic ethanolic medium by monitoring the rate of appearance of 1-nitroso-2-naphthol, resulting from the displacement by ibuprofen of Co(III) from the tris(1-nitroso-2-naptholato)cobalt(III) complex. The optimum operating conditions regarding reagent concentrations and temperature were established. The tangent method was adopted for constructing the calibration curve, which was found to be linear over the concentration range 0.21-1.44 and 1.44-2.06 ?g ml-1. The optimized conditions yielded a theoretical detection limit of 0.03 ?g ml-1 based on the 3.3 S0 criterion. The interference effects of the usual excipients of powdery drugs, foreign ions and amino acids on the reaction rate were studied in order to assess the selectivity of the method. The developed procedure was successfully applied for the rapid determination of ibuprofen in commercial pharmaceutical formulations and human control serum. The unique features of this procedure are that the determination can be performed at room temperature and the analysis time is short. The newly developed method is simple, inexpensive and efficient for use in the analysis of a large number of samples.

Author(s):  
Mouhammed Khateeb ◽  
Basheer Elias ◽  
Fatema Al Rahal

A simple and sensitive kinetic spectrophotometric method has been developed for the determination of folic acid (FA) in bulk and pharmaceutical Formulations. The method is based on the oxidation of FA by Fe (III) in sulfuric acid medium. Fe (III) subsequently reduces to Fe (II) which is coupled with potassium ferricyanide to form Prussian blue. The reaction is followed spectrophotometrically by measuring the increase in absorbance at λmax 725 nm. The rate data and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1–20 μg mL-1 for each method. The correlation coefficient was 0.9978 and 0.9993, and LOD was found to be 0.91 and 0.09 μg mL-1 for rate data and fixed time methods, respectively. The proposed method has been successfully applied to the determination of FA in formulations with no interference from the excipients. Statical comparison of the results shows that there is no significant difference between the proposed and pharmacopoeial methods


2012 ◽  
Vol 31 (1) ◽  
pp. 29
Author(s):  
Violeta Mitić ◽  
Snežana Nikolić-Mandić ◽  
Vesna Stankov-Jovanović

The present paper describes a simple, selective and sensitive kinetic method for the determination of trace amounts of Sb(III) in the presence of Sb(V) based on its inhibition effect on the redox reaction between bromate and Victoria blue 4R (V.B. 4-R) in hydrochloric acid media. The reaction was followed spectrophotometrically by measuring the decrease in the absorbance of V.B. 4-R at 596.3 nm. Optimum operating conditions regarding reagent concentrations were established. The optimized conditions yielded a theoretical detection limit of 1.30·10‒8 g cm–3 Sb(III) based on the 3S0 criterion. The method allows the determination of Sb(III) in the range of 5·10‒8 ‒ 1.1·10‒6 g cm–3. The effects of certain foreign ions the reaction rate were determined for an assessment of the selectivity of the method. The kinetic parameters of the reaction were reported, and the rate equations were suggested. The results were validated statistically and through recovery studies. The proposed method has been successfully applied to the determination of Sb(III) in various model and real samples.


2021 ◽  
Vol 71 (4) ◽  
pp. 619-630
Author(s):  
Lea Kukoc-Modun ◽  
Maja Biocic ◽  
Njegomir Radić

Abstract A novel and simple method for the determination of penicillamine (PEN), tiopronin (mercaptopropionyl glycine, MPG) and glutathione (GSH) in pharmaceutical formulations by kinetic spectrophotometry has been developed and validated. It is based on the redox reaction where the thiol compound (RSH) reduces CuII-neocuproine complex to CuI-neocuproine complex. The non-steady state signal of the formed CuI- neocuproine complex is measured at 458 nm. The initial rate and fixed time (at 1 min) methods were validated. The calibration graph was linear in the concentration range from 8.0 × 10‒7 to 8.0 × 10‒5 mol L−1 for the initial rate method and from 6.0 × 10‒7 to 6.0 × 10−5 mol L−1 for the fixed time method, with the detection limits of 2.4 × 10−7 and 1.4 × 10‒7 mol L−1, resp. Levels of PEN, MPG and GSH in pharmaceutical formulations were successfully assayed by both methods. The advantages of the presented methods include sensitivity, short analysis time, ease of application and low cost.


Sign in / Sign up

Export Citation Format

Share Document