scholarly journals Extended station blackout analyses of an APR1400 with MARS-KS

2016 ◽  
Vol 31 (4) ◽  
pp. 318-326
Author(s):  
Woongbae Kim ◽  
Hyungwook Jang ◽  
Seungjong Oh ◽  
Sangyong Lee

The Fukushima Daiichi nuclear power plant accident shows that natural disasters such as earthquakes and the subsequent tsunamis can cause station blackout for several days. The electric energy required for essential systems during a station blackout is provided from emergency backup batteries installed at the nuclear power plant. In South Korea, in the event of an extended station blackout, the life of these emergency backup batteries has recently been extended from 8 hours to 24 hours at Shin-Kori 5, 6, and APR1400 for design certification. For a battery life of 24 hours, available safety means system, equipment and procedures are studied and analyzed in their ability to cope with an extended station blackout. A sensitivity study of reactor coolant pump seal leakage is performed to verify how different seal leakages could affect the system. For simulating extended station blackout scenarios, the best estimate MARS-KS computer code was used. In this paper, an APR1400 RELAP5 input deck was developed for station blackout scenario to analyze operation strategy by manually depressurizing the reactor coolant system through the steam generator's secondary side. Additionally, a sensitivity study on reactor coolant pump seal leakage was carried out.

Author(s):  
Zhaohui Ren ◽  
Hui Ma ◽  
He Li ◽  
Guiqiu Song ◽  
Wenjian Zhou

The reactor coolant pump in nuclear power plant is the only revolving equipment in the nuclear power plant. Its functional stability will directly affect the security of nuclear power plant. The coolant pump of a very nuclear plant is examined by using response spectrum analysis to analysis dynamic characteristics and responses aiming at finding the natural frequencies of vibration, modes of vibration and seismic responses, and any possible step which may cause damage of the whole system. The favorable spectrum and unfavorable one are investigated as well. The paper focuses on avoiding the detrimental effects caused by earthquakes, therefore may lay down a theoretical foundation for structural design and installation.


Author(s):  
Lei You ◽  
Fuchun Sun ◽  
Pan He ◽  
Hongkun Xu ◽  
Fang Fang

In this paper, we develop a monitoring system of reactor coolant pumps in nuclear power plant (CPS). The safe running of reactor coolant pump is important for nuclear power plant. Based on the Fourier transform (FT) and some algorithm, The data collected from the pump are analyzed. Once the accident happens, it would cause unimaginable outcome. The system will be jumped to failure process mode when the pump has something wrong. The advanced VXI and virtual instrument technology are applied to system, and the reactor coolant pump will be monitored overall so as to assure that the reactor coolant pump runs in safe, which has a significant value to secure the safe operation and reliability of the nuclear plant. The monitoring system will help the operators find fault of reactor coolant pump.


Author(s):  
Huadong Zhu

Nuclear Power Project RCL (reactor coolant loop) is one of the most critical nuclear safety class 1 equipment in PWR nuclear power plant. Filled with borated water, the RCL is a closed loop and serves as pressure boundary incorporating the reactor pressure vessel, steam generator and reactor coolant pump. Since in-service inspection is required for welds of the RCL, the two sides of the welds shall be bored to meet UT (Ultrasonic Testing) inspection requirements. The design standard states that “if the weld is subject to service inspection, the length of the counterbore shall be 2Tmin (Tmin = minimum of wall thickness) for pipe and Tmin for components and fittings. Therefore, the minimal wall thickness of the boring area inside the RCL shall also meet design requirements. Examination of the RCLs delivered to the nuclear power project sites showed that the wall thickness of some parts of the RCL exceed tolerance in varying degrees (the wall thickness is too thin). The RCL borings need to be analyzed to mitigate the negative impact of insufficient wall thickness, maintain RCL wall thickness to the largest extent and meet design requirements. Under the condition of the jobsite data are idealized, this study analyzes the boring plans for the cold leg of loop B at the reactor vessel side for this nuclear power plant Unit 1 NI (Nuclear Island) and discusses the three methods of boring, namely, general boring, taper boring and eccentric boring. It finds that a combination of taper boring and eccentric boring is the optimal plan. This joint boring technique can help achieve the minimal boring wall thickness, reduce the grinding quantity and maintain the required wall thickness, thus resolving the out-of-tolerance issue. In addition, it meets the design requirements, the wall thickness and in-service inspection requirements. Supervision agency approved the application of the joint boring technique to the RCL for the projects. The RCL installation has proved to be a success.


1996 ◽  
Vol 167 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Iuan-Jou Yang ◽  
Mao-Ying Teng ◽  
Wu-Ing Huan ◽  
Yuan-Lung Sun

2019 ◽  
Vol 79 (12) ◽  
Author(s):  
G. Angloher ◽  
F. Ardellier-Desages ◽  
A. Bento ◽  
L. Canonica ◽  
A. Erhart ◽  
...  

AbstractCoherent elastic neutrino–nucleus scattering ($$\hbox {CE}\nu \hbox {NS}$$CEνNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of anti-neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study $$\hbox {CE}\nu \hbox {NS}$$CEνNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low-energy threshold and a time response fast enough to be operated under above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measuring $$\hbox {CE}\nu \hbox {NS}$$CEνNS of reactor anti-neutrinos. A new experimental site, the Very-Near-Site (VNS), at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 $$\hbox {GW}_{\mathrm {th}}$$GWth reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental set-up with dedicated active and passive background reduction techniques and first background estimations are presented. Furthermore, the feasibility to operate the detectors in coincidence with an active muon veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the physics potential of NUCLEUS at the Chooz nuclear power plant.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Avinash J. Gaikwad ◽  
P. K. Vijayan ◽  
Sharad Bhartya ◽  
Kannan Iyer ◽  
Rajesh Kumar ◽  
...  

Provision of passive means to reactor core decay heat removal enhances the nuclear power plant (NPP) safety and availability. In the earlier Indian pressurised heavy water reactors (IPHWRs), like the 220 MWe and the 540 MWe, crash cooldown from the steam generators (SGs) is resorted to mitigate consequences of station blackout (SBO). In the 700 MWe PHWR currently being designed an additional passive decay heat removal (PDHR) system is also incorporated to condense the steam generated in the boilers during a SBO. The sustainability of natural circulation in the various heat transport systems (i.e., primary heat transport (PHT), SGs, and PDHRs) under station blackout depends on the corresponding system's coolant inventories and the coolant circuit configurations (i.e., parallel paths and interconnections). On the primary side, the interconnection between the two primary loops plays an important role to sustain the natural circulation heat removal. On the secondary side, the steam lines interconnections and the initial inventory in the SGs prior to cooldown, that is, hooking up of the PDHRs are very important. This paper attempts to open up discussions on the concept and the core issues associated with passive systems which can provide continued heat sink during such accident scenarios. The discussions would include the criteria for design, and performance of such concepts already implemented and proposes schemes to be implemented in the proposed 700 MWe IPHWR. The designer feedbacks generated, and critical examination of performance analysis results for the added passive system to the existing generation II & III reactors will help ascertaining that these safety systems/inventories in fact perform in sustaining decay heat removal and augmenting safety.


Sign in / Sign up

Export Citation Format

Share Document