scholarly journals Natural radiation exposure and radon exhalation rate of building materials used in Turkey

2018 ◽  
Vol 33 (2) ◽  
pp. 159-166
Author(s):  
Seref Turhan ◽  
Alper Temirci ◽  
Asli Kurnaz ◽  
Aydan Altikulac ◽  
Elif Goren ◽  
...  

Measuring the natural radioactivity levels and radon exhalation rates (surface and mass) in building materials is essential to evaluate the extent of radiation exposure (external and internal) for residents in dwellings. Gamma-ray spectrometry with a high purity germanium detector was used to measure the activity concentrations of 226Ra, 232Th, and 40K in some building materials used in Turkey. Moreover, an active radon gas analyser with an accumulation container was used to measure their radon surface and mass exhalation rates. Results showed that the activity concentrations of 226Ra, 232Th, and 40K varied from 5.2 ? 0.6 (satin plaster) to 187.0 ? 2.4 (granite) Bqkg-1, 2.6 ? 0.8 (gypsum) to 172.2 ? 7.6 (granite) Bqkg-1 and 12.3 ? ? 17.0 (sand) to 1958.0 ? 83.4 (brick) Bqkg-1, respectively. Radon surface and mass exhalation rates varied from 2.9 (marble) to 2734.6 mBqm-2h-1(granite) and 0.033 (marble) to 53.866 mBqkg-1h-1 (granite), respectively. The activity concentration index, indoor absorbed gamma dose rate and corresponding annual effective dose were estimated and compared with the recommended limit values. The results indicated that the building materials sampled presented no significant radiological risk.

2020 ◽  
Vol 188 (3) ◽  
pp. 316-321
Author(s):  
Fei Tuo ◽  
Xuan Peng ◽  
Qiang Zhou ◽  
Jing Zhang

Abstract Radioactivity of 226Ra, 232Th, and 40K were measured in a total of 92 samples, including eight commonly used types of building materials that were obtained from local manufacturers and suppliers in Beijing. Concentrations were determined using high-purity germanium gamma-ray spectrometry. The 226Ra, 232Th, and 40K activity concentrations in all samples varied from 10.1 to 661, 3.3 to 555 and 3.2 to 2945 Bq per kg with an average of 127.8, 114.8, and 701.5 Bq per kg, respectively. The potential radiological hazards were estimated by calculating the absorbed dose rate (D), radium equivalent activity (Raeq), external hazard (Hex), and internal hazard (Hin) indices. The investigated building materials were classified into different types according to the radioactivity levels. Results from this research will provide a reference for the acquisition, sales, and use of building materials. Attention should be paid to the use of coal cinder brick, ceramic, and granite in the construction of dwellings.


2016 ◽  
Vol 44 ◽  
pp. 1660237
Author(s):  
Huda Al-Sulaiti ◽  
Tabassum Nasir ◽  
K. S. Al Mugren ◽  
N. Alkhomashi ◽  
N. Al-Dahan ◽  
...  

The goal of this study was to establish the first baseline measurements for radioactivity concentration of the artificial radionuclide [Formula: see text]Cs in soil samples collected from the Qatarian peninsula. The work focused on the determination of the activity concentrations levels of man-made radiation in 129 soil samples collected across the landscape of the State of Qatar. All the samples were collected before the most recent accident in Japan, “the 2011 Fukushima Dai-ichi nuclear power plant accident”. The activity concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A radiological map showing the activity concentrations of [Formula: see text]Cs is presented in this work. The concentration was[Formula: see text]found to range from 0.21 to 15.41 Bq/kg. The highest activity concentration of [Formula: see text]Cs was observed in sample no. 26 in North of Qatar. The mean value was found to be around 2.15 ± 0.27 Bq/kg. These values lie within the expected range relative to the countries in the region. It is expected that this contamination is mainly due to the Chernobyl accident on 26 April 1986, but this conclusion cannot be confirmed because of the lack of data before this accident.


2016 ◽  
Vol 31 (2) ◽  
pp. 184-189 ◽  
Author(s):  
Igor Bjelic ◽  
Dragana Todorovic ◽  
Jelena Krneta-Nikolic ◽  
Djordje Lazarevic ◽  
Koviljka Stankovic

This work presents the results of an investigation undertaken to determine the level of natural radioactivity in the traditional building materials used for medieval indoor vaulted constructions in the territory of the central Balkan region. Indoor radiation exposure varies appreciably if it comes from the earth building materials, hence the presence of natural radioisotopes of 226Ra, 232Th, and 40K in masonry vaulted constructions was analyzed using gamma ray spectrometry. In addition, the internal health hazard index, the absorbed dose rates and the effective annual doses were calculated. The results were then compared both with the reported data from the previous studies concerning the territory of the Balkan Peninsula, as well as with the worldwide values for the materials of historic buildings. The results obtained from the materials examined in this paper all showed the radioactivity levels below the maximum permitted values.


2020 ◽  
Vol 6 ◽  
pp. 313
Author(s):  
A. Savidou ◽  
C. Raptis ◽  
P. Kritidis

The objective of the present study is focused an the assessment of the radiological risk from building materials used in Attica region, Greece. Bricks and concrete com- monly used in Attica region have been studied for both natural radionuclide content and radon exhalation. The high-resolution gamma-ray spectroscopy technique, as well as radon exhalation measurements, have been employed. The technique used for the measurements of the radon exhalation is called "continuous accumulation- counting" method and has been described in detail by the authors in earlier pub- lications. This measurement technique is based on the continuous air flow through a sealed chamber containing the sample and through a scintillation counter (Lucas cell). The counting is continuous as well.


2021 ◽  
Vol 80 (18) ◽  
Author(s):  
Dariusz Malczewski ◽  
Maria Dziurowicz ◽  
Zdenek Kalab ◽  
Marketa Rösnerová

AbstractThis study reports the natural radioactivity of characteristic rocks found in the historic Jeroným Mine of the Czech Republic as measured under the laboratory conditions. The rocks analyzed included granites and schists weathered to varying degrees and collected from different levels of the underground workings of the Jeroným Mine. The mine itself has been subject to metal extraction (mainly tin and tungsten) since the sixteenth century and has recently been developed as a cultural and scientific attraction open to the public. Activity concentrations of 40K, 232Th and 238U were measured from nine rock samples using gamma-ray spectrometry. The activity concentrations of 40K varied from 595 Bq kg−1 to 1244 Bq kg−1, while 232Th varied from 25 Bq kg−1 to 55 Bq kg−1. The activities associated with 238U ranged from 46 Bq kg−1 to 386 Bq kg−1. The measured activities were used to estimate two radiation hazard indices typically applied to building materials, the activity concentration index I and the external hazard index Hex. Mean respective values of 1.02 and 0.77 for I and Hex indicate that the rocks found in the Jeroným Mine meet radiological safety standards for building materials and do not pose a risk to potential tourists and staff.


2021 ◽  
Author(s):  
Şeref Turhan ◽  
Asli Kurnaz ◽  
Muhammet Karataşlı

Abstract Radiometric measurement of building materials is very important to assess the internal and external exposure caused by the ionizing radiation emitted from terrestrial radionuclides in building materials. The activity concentrations of 226Ra, 232Th, and 40K in fifty-eight samples of fifteen different structural and covering building materials commonly used in Osmaniye province located in the Mediterranean region of Turkey were measured by using gamma-ray spectroscopy. The activity concentrations of 226Ra, 232Th and 40K varied from 2.5 ± 0.1 (marble) to 145.7 ± 4.4 (clay brick), 1.3 ± 0.1 (marble) to 154.3 ± 4.1 (marble) and 8.6 ± 0.2 (sand) to 1044.1 ± 70.3 (granite), respectively. Radiological parameters (activity concentration index, alpha index, indoor absorbed gamma dose rate and the corresponding annual effective dose rate, and excess lifetime cancer risk) were estimated to evaluate the health hazards associated with these building materials. Since the estimated values of these parameters are within the recommended safety limits or criteria values, the use of the studied building materials in the construction of dwellings can be considered to be safe for the residents of the region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mona M. Abd Elkader ◽  
Taeko Shinonaga ◽  
Mohamed M. Sherif

AbstractRadiological hazards to the residents of the Gaza Strip, Palestine and the north of the Sinai Peninsula, Egypt, were determined using the naturally occurring radionuclides (226Ra, 232Th and 40K) in 69 samples of building materials (demolition debris, plasters, concretes, from recycling plants and raw cements from suppliers), soils and sands collected in the field. The radiological hazard indices and dose rates calculated with the activity concentrations of radionuclides in those materials determined by gamma-ray spectrometry indicate that the values are all within the global limits recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation 2000 and European Commission 1999. The results of Spearman's correlation and hierarchical cluster analysis for 210Pb in the building materials, soils and sands suggest that the samples include 210Pb from the atmospheric fallout. The medium correlation between 232Th and 40K in demolition debris implies that their activity concentrations are characteristic of the building materials and constituents of the demolition debris. Non-natural ratio of 238U/235U was found in the soil and sand samples collected in the Gaza Strip. Furthermore, 137Cs and 241Am were detected in some soil, sand and demolition debris samples analyzed in this study. The origins of those anthropogenic radionuclides were considered.


Sign in / Sign up

Export Citation Format

Share Document