scholarly journals Energy tunneling through narrow waveguide channel and design of small antennas

2011 ◽  
Vol 8 (1) ◽  
pp. 63-71
Author(s):  
Miranda Mitrovic ◽  
Branka Jokanovic

In this paper we investigate the conditions for energy tunneling through narrow channel obtained by reducing the height of rectangular waveguide. Tunneling of the energy occurs at the frequency for which the effective dielectric permittivity of the channel becomes equal to zero, so it can be treated as an ENZ (epsilon-near-zero) metamaterial. We investigated how geometry of the channel and dielectric permittivity affect the transmission coefficient and field density in the channel. Adding slots in the channel, which are placed orthogonally to the wave propagation, we designed a small antenna with directivity of 5.44 dBi at the frequency of 3 GHz.

2006 ◽  
Vol 14 (3) ◽  
Author(s):  
R. Noskov ◽  
A. Zharov

AbstractWe study theoretically a nonlinear response of the planar metal/dielectric nanostructures constituted from periodical array of ultra thin silver layers and the layers of Kerr-like nonlinear dielectric. We predict hysteresis-type dependences of the components of the tensor of effective dielectric permittivity on the field intensity allowing the change in material transmission properties from transparent to opaque and back at extremely low intensities of the light. It makes possible to control the light by light in all-optical nanoscale devices and circuits.


Author(s):  
Dale Chimenti ◽  
Stanislav Rokhlin ◽  
Peter Nagy

In the previous chapters, we saw how waves in composites behaved under various circumstances, depending on material anisotropy and wave propagation direction. The most important function that describes guided wave propagation, and the plate elastic behavior on which propagation depends, is the reflection coefficient (RC) or transmission coefficient (TC). More generally, we can call either one simply, the scattering coefficient (SC). It is clear that the elastic properties of the composite are closely tied to the SC, and in turn the scattering coefficient determines the dispersion spectrum of the composite plate. Measuring the SC provides a route to the inference of the elastic properties. To measure the SC, we need only observe the reflected or transmitted ultrasonic field of the incident acoustic energy. In doing so, however, the scattered ultrasonic field is influenced by several factors, both intrinsic and extrinsic. Clearly, the scattered ultrasonic field of an incident acoustic beam falling on the plate from a surrounding or contacting fluid will be strongly influenced by the RC or TC of the plate material. The scattering coefficients are in turn dependent on the plate elastic properties and structural composition: fiber and matrix properties, fiber volume fraction, layup geometry, and perhaps other factors. These elements are not, however, the only ones to determine the amplitude and spatial distribution of energy in the scattered ultrasonic field. Extrinsic factors such as the finite transmitting and receiving transducers, their focal lengths, and their placement with respect to the sample under study can make contributions to the signal as important as the SC itself. Therefore, a systematic study of the role of the transducer is essential for a complete understanding and correct interpretation of acoustic signals in the scattered field. The interpretation of these signals leads ultimately to the inference of composite elastic properties. As we pointed out in Chapter 5, the near coincidence under some conditions of guided plate wave modes with the zeroes of the reflection coefficient (or peaks in the transmission coefficient) has been exploited many times to reveal the plate’s guided wave mode spectrum.


Sign in / Sign up

Export Citation Format

Share Document