scholarly journals Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids in a horizontal magnetic field

2008 ◽  
Vol 12 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Aiyub Khan ◽  
Neha Sharma ◽  
P.K. Bhatia

The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the taking account of effects of surface tension, when the whole system is immersed in a uniform horizontal magnetic field. The streaming motion is assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluid of uniform densities. The dispersion relation has been derived and solved numerically. It is found that the effect of viscosity, porosity and surface tension have stabilizing influence on the growth rate of the unstable mode, while streaming velocity has a destabilizing influence on the system.

1997 ◽  
Vol 52 (6-7) ◽  
pp. 528-532
Author(s):  
R. C. Sharma ◽  
P. Kumar

Abstract The stability of the plane interface separating two Rivlin-Ericksen elastico-viscous superposed fluids of uniform densities when the whole system is immersed in a uniform horizontal magnetic field has been studied. The stability analysis has been carried out, for mathematical simplicity, for two highly viscous fluids of equal kinematic viscosities and equal kinematic viscoelasticities. It is found that the stability criterion is independent of the effects of viscosity and viscoelasticity and is dependent on the orientation and magnitude of the magnetic field. The magnetic field is found to stabilize a certain wave-number range of the unstable configuration. The behaviour of growth rates with respect to kinematic viscosity and kinematic viscoelasticity parameters are examined numerically.


2001 ◽  
Vol 56 (6-7) ◽  
pp. 416-439
Author(s):  
Mohamed Fahmy El

Abstract The stability of the plane interface separating two Oldroydian viscoelastic superposed moving fluids of uniform densities when immersed in a uniform horizontal magnetic field has been in­ vestigated. The stability analysis has been carried out, for mathematical simplicity, for two highly viscous fluids of equal kinematic viscosities. It is found that the potentially stable configuration remains stable if the fluids are at rest, while it becomes unstable if the fluids move. The stability criterion is found to be independent of the viscosity and viscoelasticity, and to be dependent on the orientation of the magnetic field and the magnitudes of the fluids and Alfven velocities. It is also found that the potentially unstable configuration remains unstable in the absence of average fluid velocities, or in the presence of fluid velocities and absence of a magnetic field. The magnetic field is found to stabilize a certain wavenumbers range of the unstable configuration even in the presence of the effects of viscoelasticity. The behaviour of growth rates with respect to the stress relaxation time, strain retardation time, fluid and Alfven velocity parameters is examined analytically, and the stability conditions are obtained and discussed. -Pacs: 47.20.-k; 47.50.+d; 47.65.+a.


1972 ◽  
Vol 25 (3) ◽  
pp. 259 ◽  
Author(s):  
PK Bhatia ◽  
JM Steiner

The combined effects of a finite ion Larmor radius and collisions with neutral atoms on the dynamic stability of a composite medium are investigated. The stability analysis has been carried out for a semi-infinite composite medium of variable density in the presence and absence of a uniform streaming motion. Wave propagations transverse to the direction of the uniform horizontal magnetic field have been considered. It is found that the effects of the collisions as well as the finite ion Larmor radius are stabilizing on both streaming and non-streaming composite media.


1984 ◽  
Vol 39 (10) ◽  
pp. 939-944 ◽  
Author(s):  
R. K. Chhajlani ◽  
R. K. Sanghvi ◽  
P. Purohit

Abstract The hydromagnetric Rayleigh-Taylor instability of a composite medium has been studied in the presence of suspended particles for an exponentially varying density distribution. The prevalent horizontal magnetic field and viscosity of the medium are assumed to be variable. The dispersion relation is derived for such a medium. It is found that the stability criterion is independent of both viscosity and suspended particles. The system can be stabilized for an appropriate value of the magnetic field. It is found that the suspended particles can suppress as well as enhance the growth rate of the instability in certain regions. The growth rates are obtained for a viscid medium with the inclusion of suspended particles and without it. It has been shown analytically that the growth rate is modified by the inclusion of the relaxation frequency parameter of the suspended particles.


2005 ◽  
Vol 60 (7) ◽  
pp. 484-488 ◽  
Author(s):  
P. K. Bhatia ◽  
R. P. Mathur

This paper treats the stability of two superposed gravitating streams rotating about the axis transverse to the horizontal magnetic field. The critical wave number for instability is found to be affected by rotation for propagation perpendicular to the axis about which the system rotates. The critical wave number for instability is not affected by rotation when waves propagate along the axis of rotation. The critical wave number is affected by both the magnetic field and the streaming velocity in both cases. Both the magnetic field and the rotation are stabilizing, while the streaming velocity is destabilizing.


2016 ◽  
Vol 20 (1) ◽  
pp. 119-130
Author(s):  
Praveen Sharma ◽  
Anita Tiwari ◽  
Ram Prajapati ◽  
Rajendra Chhajlani

In this paper we investigate the effect of surface tension on hydromagnetic Rayleigh-Taylor (R-T) instability of two incompressible superimposed fluids in a porous medium with suspended dust particles immersed in a uniform horizontal magnetic field. The relevant linearized perturbation equations have been solved using normal mode technique and the dispersion relation is derived analytically for the considered system. The dispersion relation is influenced by the simultaneous presence of medium porosity, suspended dust particles, permeability, magnetic field and surface tension. The onset criteria of R-T stability and instability are obtained and discussed. The growth rate of R-T instability is calculated numerically and is affected by the simultaneous presence of surface tension and magnetic field. The effects of various parameters on the growth rate of the R-T instability are discussed.


1982 ◽  
Vol 5 (2) ◽  
pp. 365-375 ◽  
Author(s):  
R. C. Sharma ◽  
K. P. Thakur

The stability of the plane interface separating two viscous superposed conducting fluids through porous medium is studied when the whole system is immersed in a uniform horizontal magnetic field. The stability analysis is carried out for two highly viscous fluids of equal kinematic viscosities, for mathematical simplicity. It is found that the stability criterion is independent of the effects of viscosity and porosity of the medium and is dependent on the orientation and magnitude of the magnetic field. The magnetic field is found to stabilize a certain wave number range of the unstable configuration. The behaviour of growth rates with respect to viscosity, porosity and medium permeability are examined analytically.


2021 ◽  
Vol 911 ◽  
Author(s):  
Y. Tasaka ◽  
T. Yanagisawa ◽  
K. Fujita ◽  
T. Miyagoshi ◽  
A. Sakuraba

Abstract


2021 ◽  
Vol 931 ◽  
Author(s):  
R. Akhmedagaev ◽  
O. Zikanov ◽  
Y. Listratov

Direct numerical simulations and linear stability analysis are carried out to study mixed convection in a horizontal duct with constant-rate heating applied at the bottom and an imposed transverse horizontal magnetic field. A two-dimensional approximation corresponding to the asymptotic limit of a very strong magnetic field effect is validated and applied, together with full three-dimensional analysis, to investigate the flow's behaviour in the previously unexplored range of control parameters corresponding to typical conditions of a liquid metal blanket of a nuclear fusion reactor (Hartmann numbers up to $10^4$ and Grashof numbers up to $10^{10}$ ). It is found that the instability to quasi-two-dimensional rolls parallel to the magnetic field discovered at smaller Hartmann and Grashof numbers in earlier studies also occurs in this parameter range. Transport of the rolls by the mean flow leads to magnetoconvective temperature fluctuations of exceptionally high amplitudes. It is also demonstrated that quasi-two-dimensional structure of flows at very high Hartmann numbers does not guarantee accuracy of the classical two-dimensional approximation. The accuracy deteriorates at the highest Grashof numbers considered in the study.


2010 ◽  
Vol 14 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Praveen Sharma ◽  
Ram Prajapati ◽  
Rajendra Chhajlani

The linear Rayleigh-Taylor instability of two superposed incompressible magnetized fluids is investigated incorporating the effects of suspended dust particles and viscosity. The basic magnetohydrodynamic set of equations have been constructed and linearized. The dispersion relation for 2-D and 3-D perturbations is obtained by applying the appropriate boundary conditions. The condition of Rayleigh-Taylor instability is investigated for potentially stable and unstable modes, which depends upon magnetic field, viscosity and suspended dust particles. The stability of the system is discussed by applying the Routh-Hurwitz criterion. It is found that the Alfven mode comes into the dispersion relation for perturbations in x, y-directions and in only x-direction, while it does not come into y-directional perturbation. The stable configuration is found to remain stable even in the presence of suspended dust particles. Numerical calculations have been performed to see the effects of various parameters on the growth rate of Rayleigh-Taylor instability. It is found that magnetic field and relaxation frequency of suspended dust particles both have destabilizing influence on the growth rate of Rayleigh-Taylor instability. The effects of kinematic viscosity and mass concentration of dust particles are found to have stabilized the growth rate of linear Rayleigh-Taylor instability.


Sign in / Sign up

Export Citation Format

Share Document