Two-dimensional oscillation of convection roll in a finite liquid metal layer under a horizontal magnetic field

2021 ◽  
Vol 911 ◽  
Author(s):  
Y. Tasaka ◽  
T. Yanagisawa ◽  
K. Fujita ◽  
T. Miyagoshi ◽  
A. Sakuraba

Abstract

2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Mihails Birjukovs ◽  
Valters Dzelme ◽  
Andris Jakovics ◽  
Knud Thomsen ◽  
Pavel Trtik

2021 ◽  
Vol 931 ◽  
Author(s):  
R. Akhmedagaev ◽  
O. Zikanov ◽  
Y. Listratov

Direct numerical simulations and linear stability analysis are carried out to study mixed convection in a horizontal duct with constant-rate heating applied at the bottom and an imposed transverse horizontal magnetic field. A two-dimensional approximation corresponding to the asymptotic limit of a very strong magnetic field effect is validated and applied, together with full three-dimensional analysis, to investigate the flow's behaviour in the previously unexplored range of control parameters corresponding to typical conditions of a liquid metal blanket of a nuclear fusion reactor (Hartmann numbers up to $10^4$ and Grashof numbers up to $10^{10}$ ). It is found that the instability to quasi-two-dimensional rolls parallel to the magnetic field discovered at smaller Hartmann and Grashof numbers in earlier studies also occurs in this parameter range. Transport of the rolls by the mean flow leads to magnetoconvective temperature fluctuations of exceptionally high amplitudes. It is also demonstrated that quasi-two-dimensional structure of flows at very high Hartmann numbers does not guarantee accuracy of the classical two-dimensional approximation. The accuracy deteriorates at the highest Grashof numbers considered in the study.


2008 ◽  
Vol 12 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Aiyub Khan ◽  
Neha Sharma ◽  
P.K. Bhatia

The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the taking account of effects of surface tension, when the whole system is immersed in a uniform horizontal magnetic field. The streaming motion is assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluid of uniform densities. The dispersion relation has been derived and solved numerically. It is found that the effect of viscosity, porosity and surface tension have stabilizing influence on the growth rate of the unstable mode, while streaming velocity has a destabilizing influence on the system.


1990 ◽  
Vol 142 ◽  
pp. 135-136
Author(s):  
N. Rudraiah ◽  
I S Shivakumara ◽  
P Geetavani

The effect of horizontal magnetic field on the onset of three-dimensional convection in a horizontal fluid layer is studied. It is found that the two-dimensional solutions are unstable to three-dimensional disturbances. A detailed bifurcation study is reported.


2002 ◽  
Vol 453 ◽  
pp. 345-369 ◽  
Author(s):  
ULRICH BURR ◽  
ULRICH MÜLLER

This article presents an analytical and experimental study of magnetohydrodynamic Rayleigh–Bénard convection in a large aspect ratio, 20[ratio ]10[ratio ]1, rectangular box. The test fluid is a eutectic sodium potassium Na22K78 alloy with a small Prandtl number of Pr≈0:02. The experimental setup covers Rayleigh numbers in the range 103< Ra<8×104 and Chandrasekhar numbers 0[les ]Q[les ]1.44×106 or Hartmann numbers 0[les ]M[les ]1200, respectively.When a horizontal magnetic field is imposed on a heated liquid metal layer, the electromagnetic forces give rise to a transition of the three-dimensional convective roll pattern into a quasi-two-dimensional flow pattern in such a way that convective rolls become more and more aligned with the magnetic field. A linear stability analysis based on two-dimensional model equations shows that the critical Rayleigh number for the onset of convection of quasi-two-dimensional flow is shifted to significantly higher values due to Hartmann braking at walls perpendicular to the magnetic field. This finding is experimentally confirmed by measured Nusselt numbers. Moreover, the experiments show that the convective heat transport at supercritical conditions is clearly diminished. Adjacent to the onset of convection there is a significant region of stationary convection with significant convective heat transfer before the flow proceeds to time-dependent convection. However, in spite of the Joule dissipation effect there is a certain range of magnetic field intensities where an enhanced heat transfer is observed. Estimates of the local isotropy properties of the flow by a four-element temperature probe demonstrate that the increase in convective heat transport is accompanied by the formation of strong non-isotropic time-dependent flow in the form of large-scale convective rolls aligned with the magnetic field which exhibit a simpler temporal structure compared to ordinary hydrodynamic flow and which are very effective for the convective heat transport.


Sign in / Sign up

Export Citation Format

Share Document