scholarly journals Scandinavian baffle boiler design revisited

2015 ◽  
Vol 19 (1) ◽  
pp. 305-316
Author(s):  
Borivoj Stepanov ◽  
Ivan Pesenjanski ◽  
Momcilo Spasojevic

The aim of this paper is to examine whether the use of baffles in a combustion chamber, one of the well-known low-cost methods for the boiler performance improvement, can be enhanced. Modern day tools like computational fluid dynamics were not present at the time when these measures were invented, developed and successfully applied. The objective of this study is to determine the influence of location and length of a baffle in a furnace, for different mass flows, on gas residence time. The numerical simulations have been performed of a simple Scandinavian stove like furnace. The isothermal model is used, while air is used as a medium and turbulence is modeled by realizable k-epsilon model. The Lagrange particle tracking is used for the residence time distribution determination. The statistical analysis yielded the average residence time. The results of the computational fluid dynamics studies for different baffle positions, dimensions and flow rates show from up to 17% decrease to up to 13 % increase of residence time. The conclusion is that vertical position of the baffle is the most important factor, followed by the length of the baffle, while the least important showed to be the mass flow.

2021 ◽  
Vol 159 ◽  
pp. 106990
Author(s):  
Wanfu Zhang ◽  
Kexin Wu ◽  
Chengjing Gu ◽  
Haoyang Tian ◽  
Xiaobin Zhang ◽  
...  

2014 ◽  
Vol 11 (6) ◽  
Author(s):  
Paolo Sala ◽  
Paola Gallo Stampino ◽  
Giovanni Dotelli

This work is part of a project whose final aim is the realization of an auxiliary power fuel cell generator. It was necessary to design and develop bipolar plates that would be suitable for this application. Bipolar plates have a relevant influence on the final performances of the entire device. A gas leakage or a bad management of the water produced during the reaction could be determinant during operations and would cause the failure of the stack. The development of the bipolar plates was performed in different steps. First, the necessity to make an esteem of the dynamics that happen inside the feeding channels led to perform analytical calculations. The values found were cross-checked performing a computational fluid dynamics (CFD) simulation; finally, it was defined the best pattern for the feeding channels, so that to enhance mass transport and achieve the best velocity profile. The bipolar plates designed were machined and assembled in a laboratory scale two cells prototype stack. Influences of the temperature and of the humidity were evaluated performing experiments at 60 deg and 70 deg and between 60% and 100% of humidity of the reactant gasses. The best operating point achieved in one of these conditions was improved by modifying the flow rates of the reactant, in order to obtain the highest output power, and it evaluated the reliability of the plates in experiments performed for longer times, at fixed voltages.


Author(s):  
Zilong Zhao ◽  
Zhiwei Guo ◽  
Zhongdong Qian ◽  
Qian Cheng

The axial pump operating in the pump-as-turbine mode is a practical and cost-saving alternative suitable for low-head pico hydropower in rural and remote areas that bypasses the need for expensive turbines. Their pump characteristics, however, indicate that efficiency is low in off-design flow rates. Using the computational fluid dynamics, the adjustable inlet guide vanes with five angles (±20°, 0°, ±10°) in front of the impeller of the axial pump have been redesigned and installed specifically to increase the operating range of high efficiency in the pump-as-turbine mode. To validate the simulation method, a prototype of the axial pump was built to measure in the pump mode the pump characteristics including head and efficiency. The results obtained show that the computational fluid dynamics calculated results are in qualitative agreement with the experimental data. In the pump-as-turbine mode, the adjustable inlet guide vanes were found to affect the performance of the axial pump. The most important aspect is that the adjustable inlet guide vanes widen the efficiency range if the inlet guide vane angle is adjusted for different flow rates. For the same situation with negative angles, the efficiency values at the BEP are higher than those with positive angles, where the efficiency around the angle − 10° is the highest. The main reason is that the direction of flow at the impeller-zone exit is guided by the adjustable inlet guide vanes to reduce the energy loss, which can be supported in the view of vector field and energy losses of different parts of pump.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1285
Author(s):  
Sarah Letaïef ◽  
Pierre Camps ◽  
Thierry Poidras ◽  
Patrick Nicol ◽  
Delphine Bosch ◽  
...  

A test site located along a 12-lane motorway east of Montpellier, France, is used to evaluate the potential of biomagnetic monitoring on traffic-related particulate matter (PM) to parametrize a computational fluid dynamics (CFD) simulation of the local airflow. Two configurations were established on the site with three vegetated flat-top earth berms of a basic design, and a fourth one was located windward to the traffic roofed with a 4-m-high precast concrete wall. As a first step, PM deposition simultaneously on plant leaves, on low-cost passive artificial filters, and on soils was estimated from proxies supplied by magnetic and X-ray fluorescence measurements on both sides of the motorway. These latter revealed that traffic-related pollutants are present on soils samples highlighted with a clear fingerprint of combustion residues, and wears of breaks, vehicles, and highway equipment. Maximum PM accumulations were detected in the lee of the berm–wall combination, while no significant deposition was observed on both sides of the flat-top earth berms. These results are in line with measurements from PM µ-sensors operated by the regional state-approved air quality agency. Finally, we compared the experimental measurements with the outcomes of a computational fluid dynamics (CFD) modeling based on the Reynolds-Averaged Navier–Stokes (RANS) equations that consider the traffic-induced momentum and turbulence. The CFD modeling matches the experimental results by predicting a recirculated flow in the near wake of the berm–wall combination that enhances the PM concentration, whereas the flat-top berm geometry does not alter the pollutants’ transport and indeed contributes to their atmospheric dispersion.


2018 ◽  
Vol 16 (5) ◽  
pp. 750-761 ◽  
Author(s):  
J. Zhang ◽  
N. Sinha ◽  
M. Ross ◽  
A. E. Tejada-Martínez

Abstract Hydraulic or filtration efficiency of residential swimming pools, quantified in terms of residence time characteristics, is critical to disinfection and thus important to public health. In this study, a three-dimensional computational fluid dynamics model together with Eulerian and Lagrangian-based techniques are used for investigating the residence time characteristics of a passive tracer and particles in the water, representative of chemicals and pathogens, respectively. The flow pattern in the pool is found to be characterized by dead zone regions where water constituents may be retained for extended periods of times, thereby potentially decreasing the pool hydraulic efficiency. Two return-jet configurations are studied in order to understand the effect of return-jet location and intensity on the hydraulic efficiency of the pool. A two-jet configuration is found to perform on par with a three-jet configuration in removing dissolved constituents but the former is more efficient than the latter in removing or flushing particles. The latter result suggests that return-jet location and associated flow circulation pattern have an important impact on hydraulic efficiency. Thus return-jet configuration should be incorporated as a key parameter in the design of swimming pools complementing current design standards.


Water ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 733 ◽  
Author(s):  
Daniel Hernández-Cervantes ◽  
Xitlali Delgado-Galván ◽  
José Nava ◽  
P. López-Jiménez ◽  
Mario Rosales ◽  
...  

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Zhigang Li ◽  
Zhi Fang ◽  
Jun Li

Abstract Liquid annular seals with parallelly grooved stator or rotor are used as replacements for smooth plain seals in centrifugal pumps to reduce leakage and break up contaminants within the working fluid. Parallelly grooved liquid annular seals have advantages of less leakage and smaller possibility of abrasion when the seal rotor–stator rubs in comparison to smooth plain seals. This paper deals with the static and rotordynamic characteristics of parallelly grooved liquid annular seals, which are limited in the literature. Numerical results of leakage flow rates, drag powers, and rotordynamic force coefficients were presented and compared for a grooved-stator/smooth-rotor (GS-SR) liquid annular seal and a smooth-stator/grooved-rotor (SS-GR) liquid annular seal, utilizing a modified transient computational fluid dynamics-based perturbation approach based on the multiple-frequency elliptical-orbit rotor whirling model. Both liquid annular seals have identical seal axial length, rotor diameter, sealing clearance, groove number, and geometry. The present transient computational fluid dynamics-based perturbation method was adequately validated based on the published experiment data of leakage flow rates and frequency-independent rotordynamic force coefficients for the GS-SR and SS-GR liquid annular seals at various pressure drops with differential inlet preswirl ratios. Simulations were performed at three pressure drops (4.14 bar, 6.21 bar, and 8.27 bar), three rotational speeds (2 krpm, 4 krpm, and 6 krpm) and three inlet preswirl ratios (0, 0.5, and 1.0), applying a wide rotor whirling frequency range up to 200 Hz, to analyze and compare the influences of operation conditions on the static and rotordynamic characteristics for both the GS-SR and SS-GR liquid annular seals. Results show that the present two liquid annular seals possess similar sealing capability, and the SS-GR seal produces a slightly larger (∼2–10%) drag power loss than the GS-SR seal. For small rotor whirling motion around a centered position, both seals have the identical direct force coefficients and the equal-magnitude opposite-sign cross-coupling force coefficients in the orthogonal directions x and y. For all operation conditions, both the GS-SR and SS-GR liquid annular seals possess negative direct stiffness K and positive direct damping C. The GS-SR seal produces purely positive Ceff throughout the whirling frequency range for all operation conditions, while Ceff for the SS-GR seal shows a significant decrease and transitions to negative value at the crossover frequency fco with increasing rotational speed and inlet preswirl. From a rotordynamic viewpoint, the GS-SR liquid annular seal is a better seal concept for pumps.


Author(s):  
Terry Potter ◽  
Tathagata Acharya

Abstract Multiphase separators on production platforms are among the first equipment through which well fluids flow. Based on functionality, multiphase separators can either be two-phase that separate oil from water, or three-phase that separate oil, natural gas, and water. Separator performances are often evaluated using mean residence time (MRT) of the hydrocarbon phase. MRT is defined as the amount of time a given phase stays inside the separator. On field, operators usually measure MRT as the ratio of active volume occupied by each phase to the phase volumetric flowrate. However, this method may involve significant errors as the oil-water interface height is obtained using level controllers and the volume occupied by each phase is calculated assuming the interface can be extrapolated from the weir back to the separator inlet. In this study, authors perform computational fluid dynamics (CFD) on a two-phase horizontal separator to evaluate MRT as a function of varying water volume flowrates (water-cut) in a mixture of water and oil. The authors use residence time distributions (RTD) to obtain MRT at each water-cut — a method that results in significantly more accurate results than the regular method used by operators. The numerical model is developed with commercial software package ANSYS Fluent. The code uses the Eulerian multiphase model along with the k-ε turbulence model. The simulation results show agreement with experiments performed by previous researchers. Additional simulations are performed to assess the effect of various separator internals on separator performance. Simulation results suggest that the model developed in this study can be used to predict performances of two-phase liquid-liquid separators with reasonable accuracy and will be useful towards their design to improve performances under various inlet flow conditions.


Perfusion ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 306-315
Author(s):  
Muhammad Jamil ◽  
Mohammad Rezaeimoghaddam ◽  
Bilgesu Cakmak ◽  
Yahya Yildiz ◽  
Reza Rasooli ◽  
...  

Objective: Malposition of dual lumen cannula is a frequent and challenging complication in neonates and plays a significant role in shaping the in vitro device hemodynamics. This study aims to analyze the effect of the dual lumen cannula malposition on right-atrial hemodynamics in neonatal patients using an experimentally validated computational fluid dynamics model. Methods: A computer model was developed for clinically approved dual lumen cannula (13Fr Origen Biomedical, Austin, Texas, USA) oriented inside the atrium of a 3-kg neonate with normal venous return. Atrial hemodynamics and dual lumen cannula malposition were systematically simulated for two rotations (antero-atrial and atrio-septal) and four translations (two intravascular movements along inferior vena cava and two dislodged configurations in the atrium). A multi-domain compartmentalized mesh was prepared to allow the site-specific evaluation of important hemodynamic parameters. Transport of each blood stream, blood damage levels, and recirculation times are quantified and compared to dual lumen cannula in proper position. Results: High recirculation levels (39 ± 4%) in malpositioned cases resulted in poor oxygen saturation where maximum recirculation of up to 42% was observed. Apparently, Origen dual lumen cannula showed poor inferior vena cava blood–capturing efficiency (48 ± 8%) but high superior vena cava blood–capturing efficiency (86 ± 10%). Dual lumen cannula malposition resulted in corresponding changes in residence time (1.7 ± 0.5 seconds through the tricuspid). No significant differences in blood damage were observed among the simulated cases compared to normal orientation. Compared to the correct dual lumen cannula position, both rotational and translational displacements of the dual lumen cannula resulted in significant hemodynamic differences. Conclusion: Rotational or translational movement of dual lumen cannula is the determining factor for atrial hemodynamics, venous capturing efficiency, blood residence time, and oxygenated blood delivery. Results obtained through computational fluid dynamics methodology can provide valuable foresight in assessing the performance of the dual lumen cannula in patient-specific configurations.


Sign in / Sign up

Export Citation Format

Share Document