scholarly journals Numerical solution for thermophoresis effects on heat and mass transfer over an accelerating surface with heat source/sink

2017 ◽  
Vol 21 (6 Part B) ◽  
pp. 2719-2730
Author(s):  
Mohammad Rashidi ◽  
Ramachandran Sivaraj ◽  
Durairaj Mythili ◽  
Zhigang Yang

A study has been carried out to analyze the thermophoretic particle deposition and heat generation/absorption effects on unsteady, free convective, viscous fluid flow over a moving flat plate. The thermal conductivity of the fluid is assumed to vary as a linear function of temperature. The governing partial differential equations are solved numerically by using an implicit finite difference method of Crank Nicolson type. Numerical results for the velocity, temperature and concentration profiles as well as for the skin-friction coefficient, Nusselt number and Sherwood number distributions are obtained and presented graphically for various parametric conditions to show interesting aspects of the solution. Results indicate that the heat source/sink plays a vital role in predicting the heat transfer characteristics of moving fluids and the thermophoretic particle deposition has notable influence on the mass transfer characteristics.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
R. A. Mohamed ◽  
S. Z. Rida ◽  
A. A. M. Arafa ◽  
M. S. Mubarak

Abstract In this paper, the influence of chemical reaction and heat source/sink on an unsteady magnetohydrodynamics (MHD) nanofluid flow that squeezed between two radiating parallel plates embedded in porous media is investigated analytically. We consider water as base fluid and aluminum oxide (Al2O3) as its nanoparticle. We reduced the basic partial differential equations to ordinary differential equations which are solved by the homotopy analysis method (HAM). The effects of the squeeze number, permeability parameter of porous media, Hartmann number, thermal radiation parameter, Prandtl number, heat source/sink parameter, Eckert number, Schmidt number, and scaled parameter of chemical reaction on the flow, heat, and mass transfer are considered and assigned to graphs. The physical quantities such as Sherwood number, Nusselt number, and skin friction coefficient are computed for Al2O3–water, TiO2–water, Ag–water, and Cu–water nanofluids and assigned through graphs.


2019 ◽  
Vol 13 (1) ◽  
pp. 4558-4574 ◽  
Author(s):  
K. Anantha Kumar ◽  
B. Ramadevi ◽  
V. Sugunamma ◽  
J. V. Ramana Reddy

This report presents the flow and heat transfer characteristics on magnetohydrodynamic non-Newtonian fluid across a wedge near the stagnation point. The fluid flow is time independent and laminar. The radiation and irregular heat sink/source effects are deemed. The system of nonlinear ODEs is attained from PDEs by choosing the proper similarity transformations. Further, the well-known shooting and Runge-Kutta methods are utilized to acquire the problem’s solution subject to assumed boundary conditions. Figures are outlined to emphasize the impact of several parameters on the fields of velocity and temperature. Further, the rate of heat transfer and friction factor are also anticipated and portrayed with the assistance of table. Results indicate that the curves of velocity diminish with shrinking parameter, magnetic field parameter and material fluid parameter. Also the non-uniform heat source/sink parameters play a crucial role in the heat transfer performance.


2018 ◽  
Vol 389 ◽  
pp. 50-59 ◽  
Author(s):  
H. Thameem Basha ◽  
R. Sivaraj ◽  
I.L. Animasaun ◽  
Oluwole Daniel Makinde

This computational study explores the properties of non-uniform heat source/sink on the fluid transport properties of a chemically reacting nanofluid with two types of geometries saturated with porous medium. Simulations have been done to investigate the heat and mass transfer characteristics using Crank-Nicolson scheme. Influence of active parameters such as Hartman number, heat source and sinks, Brownian diffusion, higher order chemical reaction, Prandtl number and thermophoretic diffusivity are graphically presented. Tables demonstrate the significant impact of sundry parameters on skin-friction factor, heat and mass transfer rates. The achieved results expose that the heat source/sink parameter has high influences on the fluid flow and heat transfer characteristics. A decrease in average skin friction factor due to the magnetic field is more significant in the flow on a plate than that of cone.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
G. K. Ramesh ◽  
B. J. Gireesha ◽  
C. S. Bagewadi

This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of dusty fluid over an inclined stretching sheet with non-uniform heat source/sink, where the flow is generated due to a linear stretching of the sheet. Using a similarity transformation, the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary differential equations and are solved numerically by Runge-Kutta-Fehlberg fourth-fifth-order method using symbolic software Maple. Our numerical solutions are shown to agree with the available results in the literature and then employ the numerical results to bring out the effects of the fluid-particle interaction parameter, local Grashof number, angle of inclination, heat source/sink parameter, Chandrasekhar number, and the Prandtl number on the flow and heat transfer characteristics. The results have possible technological applications in liquid-based systems involving stretchable materials.


2010 ◽  
Vol 12 (12) ◽  
pp. 1003-1010 ◽  
Author(s):  
Jerrold Petrofsky ◽  
Haneul Lee ◽  
Moxi Trivedi ◽  
Akshay N. Hudlikar ◽  
Chia-hao Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document