scholarly journals Boundary-layer flow and heat transfer of cross fluid over a stretching sheet

2019 ◽  
Vol 23 (1) ◽  
pp. 307-318 ◽  
Author(s):  
Masood Khan ◽  
Mehwish Manzur ◽  
Masood Rahman

The current study is a pioneering work in presenting the boundary-layer equations for the 2-D flow and heat transfer of the Cross fluid over a linearly stretching sheet. The system of PDE is turned down into highly non-linear ODE by applying suitable similarity transformations. The stretching sheet solutions are presented via. a numerical technique namely the shooting method and graphs are constructed. The impact of the emerging parameters namely the power-law index, n, the local Weissenberg number, We, and the Prandtl number on the velocity and temperature fields are investigated through graphs. The numerical values of the local skin friction coefficient and the local Nusselt number are also presented in tabular form. Additionally, the graphs are sketched for the local skin friction coefficient and the local Nusselt number. It is observed that with growing values of the local Weissenberg number the velocity profiles exhibited a decreasing trend while opposite behavior is seen for the temperature field. Further, comparisons are made with previously available literature for some limiting cases and an excellent agreement is achieved.

Author(s):  
K. Ganesh Kumar

Purpose Here, the present paper characteristics flow and heat transfer of non-Newtonian nanofluid over a stretching sheet. Energy expression is modeled subject to slip factor phenomenon. Consideration of chemical reaction characterizes the mass transfer mechanism. Design/methodology/approach The use of transformation variables reduces the PDEs into non-linear ODEs. The obtained nonlinear complex problems are computed numerically through RKF-45 technique. The effects of the different physical parameters on the temperature and concentration distribution are analyzed. Findings The nature of the reduced Nusselt number, reduced Sherwood number and skin friction coefficient also described as a function of different parameters arising in the problem. It is found that the rate of mass transfer enhances for enhancing values Brownian motion parameter and thermophoresis parameter. Originality/value The nature of the reduced Nusselt number, reduced Sherwood number and skin friction coefficient also described as a function of different parameters arising in the problem. It is found that, the rate of mass transfer enhances for enhancing values Brownian motion parameter and thermophoresis parameter.


2009 ◽  
Vol 13 (4) ◽  
pp. 175-181 ◽  
Author(s):  
Khalid Alammar

Using the standard k-e model, 3-dimensional turbulent flow and heat transfer characteristics in U-tubes are investigated. Uncertainty is approximated using experimental correlations and grid independence study. Increasing the Dean number is shown to intensify a secondary flow within the curved section. The overall Nusselt number for the tube is found to decrease substantially relative to straight tubes, while the overall skin friction coefficient remains practically unaffected. Local skin friction coefficient, Nusselt number, and wall temperature along the tube wall are presented.


Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to investigate the steady flow and heat transfer of a Cu-Al2O3/water hybrid nanofluid over a nonlinear permeable stretching/shrinking surface with radiation effects. The surface velocity condition is assumed to be of the power-law form with an exponent of 1/3. The governing equations of the problem are converted into a system of similarity equations by using a similarity transformation.Design/methodology/approachThe problem is solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The results of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are presented through graphs and tables for several values of the parameters. The effects of these parameters on the flow and heat transfer characteristics are examined and discussed.FindingsResults found that dual solutions exist for a certain range of the stretching/shrinking and suction parameters. The increment of the skin friction coefficient and reduction of the local Nusselt number on the shrinking sheet is observed with the increasing of copper (Cu) nanoparticle volume fractions for the upper branch. The skin friction coefficient and the local Nusselt number increase when suction parameter is increased for the upper branch. Meanwhile, the temperature increases in the presence of the radiation parameter for both branches.Originality/valueThe problem of Cu-Al2O3/water hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface with radiation effects is the important originality of the present study where the dual solutions for the flow reversals are obtained.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Mostafa Mahmoud ◽  
Shimaa Waheed

A theoretical analysis is performed to study the flow and heat transfer characteristics of magnetohydrodynamic mixed convection flow of a micropolar fluid past a stretching surface with slip velocity at the surface and heat generation (absorption). The transformed equations solved numerically using the Chebyshev spectral method. Numerical results for the velocity, the angular velocity, and the temperature for various values of different parameters are illustrated graphically. Also, the effects of various parameters on the local skin-friction coefficient and the local Nusselt number are given in tabular form and discussed. The results show that the mixed convection parameter has the effect of enhancing both the velocity and the local Nusselt number and suppressing both the local skin-friction coefficient and the temperature. It is found that local skin-friction coefficient increases while the local Nusselt number decreases as the magnetic parameter increases. The results show also that increasing the heat generation parameter leads to a rise in both the velocity and the temperature and a fall in the local skin-friction coefficient and the local Nusselt number. Furthermore, it is shown that the local skin-friction coefficient and the local Nusselt number decrease when the slip parameter increases.


2020 ◽  
Vol 9 (3) ◽  
pp. 242-255
Author(s):  
Hossam A. Nabwey ◽  
S. M. M. El-Kabeir ◽  
A. M. Rashad ◽  
M. M. M. Abdou

The main objective of the present study is to explore the flow of a nanofluid containing gyrotactic microorganisms over a vertical isothermal cone surface in the presence of viscous dissipation and Joule heating. The combined effects of a transverse magnetic field and Navier slip in the flow are considered. Using appropriate transforms the set of partial differential equations governing the flow are converted to a set of ordinary differential equations. Influence of the parameters governing the flow is shown for velocity, temperature, concentration and motilemicroorganisms as well as local skin Friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms number. An increasing in the value of Eckert number rises the velocity of the fluid and reduce the temperature, concentration and density of motile microorganisms profiles, while buoyancy ratio Nr and magnetic field parameters increase local skin friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms number decrease as a result of the presence of Lorentz force which resist the motion of the flow. On the other hand, the motile microorganisms boundary layer thickness decreases with an increasing on the bioconvection Lewis number.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Wubshet Ibrahim ◽  
B. Shanker

The boundary-layer flow and heat transfer over a non-isothermal stretching sheet in a nanofluid with the effect of magnetic field and thermal radiation have been investigated. The transport equations used for the analysis include the effect of Brownian motion and thermophoresis. The solution for the temperature and nanoparticle concentration depends on six parameters, viz., thermal radiation parameter R, Prandtl number Pr, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher order nonlinear ordinary differential equations. These equations were numerically solved using a fourth-order Runge–Kutta method with shooting technique. The analysis has been carried out for two different cases, namely prescribed surface temperature (PST) and prescribed heat flux (PHF) to see the effects of governing parameters for various physical conditions. Numerical results are obtained for distribution of velocity, temperature and concentration, for both cases i.e., prescribed surface temperature and prescribed heat flux, as well as local Nusselt number and Sherwood number. The results indicate that the local Nusselt number decreases with an increase in both Brownian motion parameter Nb and thermophoresis parameter Nt. However, the local Sherwood number increases with an increase in both thermophoresis parameter Nt and Lewis number Le. Besides, it is found that the surface temperature increases with an increase in the Lewis number Le for prescribed heat flux case. A comparison with the previous studies available in the literature has been done and we found an excellent agreement with it.


2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Nurfazila Rasli ◽  
Norshafira Ramli

In this research, the problem of magnetohydrodynamic flow and heat transfer over an exponentially stretching/shrinking sheet in ferrofluids is presented. The governing partial differential equations are transformed into nonlinear ordinary differential equations by applying suitable similarity transformations. These equations are then solved numerically using the shooting method for some pertinent parameters. For this research, the water-based ferrofluid is considered with three types of ferroparticles: magnetite, cobalt ferrite, and manganese-zinc ferrite. The numerical solutions on the skin friction coefficient, Nusselt number, velocity and temperature profiles influenced by the magnetic parameter, wall mass transfer parameter, stretching/shrinking parameter, and volume fraction of solid ferroparticle are graphically displayed and discussed in more details. The existences of dual solutions are noticeable for the stretching/shrinking case in a specific range of limit. For the first solution, an increasing number in magnetic and suction will also give an increment of skin friction coefficient and Nusselt number over stretching/shrinking sheet. For the skin friction coefficient only, it is showed a decreasing pattern after the intersection. Besides, the presence of ferroparticles in the fluids causes a high number of the fluid’s thermal conductivity and heat transfer rate.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 438 ◽  
Author(s):  
Iskander Tlili

In this paper, Jeffrey fluid is studied in a microgravity environment. Unsteady two-dimensional incompressible and laminar g-Jitter mixed convective boundary layer flow over an inclined stretching sheet is examined. Heat generation and Magnetohydrodynamic MHD effects are also considered. The governing boundary layer equations together with boundary conditions are converted into a non-similar arrangement using appropriate similarity conversions. The transformed system of equations is resolved mathematically by employing an implicit finite difference pattern through quasi-linearization method. Numerical results of temperature, velocity, local heat transfer, and local skin friction coefficient are computed and plotted graphically. It is found that local skin friction and local heat transfer coefficients increased for increasing Deborah number when the magnitude of the gravity modulation is unity. Assessment with previously published results showed an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document