brownian motion parameter
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 21)

H-INDEX

6
(FIVE YEARS 4)

Author(s):  
J.C. Umavathi ◽  
O. Anwar Bég

Motivated by developments in thermal duct processing, an investigation is presented to study the behavior of viscous nanoparticle suspensions flowing in a vertical duct subject to Fourier-type conditions. The left wall temperature is kept lower than that of the right wall. Brownian motion and thermophoresis which are invoked via the presence of nanoparticles are incorporated in the study. Numerical solutions with an efficient Runge–Kutta shooting method are also presented at all values of the control parameters. The impact of thermal Grashof number [Formula: see text], Eckert number [Formula: see text], thermophoresis [Formula: see text], and Brownian motion parameters [Formula: see text] on the velocity, temperature, and nanoparticle concentration distributions for identical [Formula: see text] and differing Biot numbers [Formula: see text] (at the duct walls) are computed and visualized graphically. With vanishing thermophoresis and Brownian motion parameters, the solutions match exactly with the earlier Newtonian viscous flow computations. Symmetric and asymmetric wall heat conditions are also acknowledged. Intensifying the thermal Grashof number, Eckert number, thermophoresis parameter, and Brownian parameter serve to amplify magnitudes of the velocity and temperature, whereas the nanoparticle concentration field is suppressed. The skin friction and Sherwood number are also computed with various combinations of the flow control parameters. Nusselt number values at the hot duct wall are enhanced with an increase in thermal buoyancy parameter, Eckert number, Brownian motion parameter, and thermophoresis parameter for equal Biot numbers. The opposite trend is computed for different Biot numbers. For any given values of Biot numbers, the mean velocity and bulk temperature are boosted with increase in thermal buoyancy parameter, Eckert number, Brownian motion parameter, and thermophoresis parameter. Hence, it may be inferred that the transport characteristics computed using Fourier-type boundary conditions are substantially different from those based on isothermal boundary conditions in nanofluid duct flows.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1009
Author(s):  
Abdullah Dawar ◽  
Anwar Saeed ◽  
Zahir Shah ◽  
Wiyada Kumam ◽  
Saeed Islam ◽  
...  

The study of fluid flow upon an exponentially stretching surface has significant importance due to its applications in technological phenomena at the industrial level. These applications include condensing process of fluid film, heat exchanger processes, extrusion of plastic sheet in aerodynamics, cooling process of metal sheet, and growth of crystals, etc. Keeping in view all these applications, in this paper, we have discussed the magnetohydrodynamic flow of Maxwell fluid past an exponentially stretching sheet. The stretching surface is considered to be slippery by imposing the velocity slip condition. The magnetic field impact is taken into consideration. Furthermore, heat radiation, Joule heating, Brownian motion, and thermophoresis are also considered. The modeled system is reduced to ordinary differential equations with the help of similarity variables. For the analytical solution, we have used the homotopy analysis method. Furthermore, HAM is compared with the shooting method and found to be in great agreement. The squared residual error of the fluid flow problem at 15th order of approximations for Newtonian and non-Newtonian cases has been investigated. It is found that the fluid flow problem converges quickly for the case of non-Newtonian fluid as compared to Newtonian fluid. In addition, the velocity profile increases while the thermal and concentration profiles reduce with greater values of Darcy number. The thermal profile is the increasing function of the Brownian motion parameter and Eckert number whereas the concentration profile is the reducing function of the Brownian motion parameter and Eckert number. With the augmentation in Darcy number, the permeability strength of porous medium increases which concludes the increasing conduct of thermal and mass transportation.


Author(s):  
JC Umavathi ◽  
Sapnali Limbaraj Patil ◽  
B Mahanthesh ◽  
O Anwar Bég

The aim of the present work is to examine the impact of magnetized nanoparticles (NPs) in enhancement of heat transport in a tribological system subjected to convective type heating (Robin) boundary conditions. The regime examined comprises the squeezing transition of a magnetic (smart) Newtonian nano-lubricant between two analogous disks under an axial magnetism. The lower disk is permeable whereas the upper disk is solid. The mechanisms of haphazard motion of NPs and thermophoresis are simulated. The non-dimensional problem is solved numerically using a finite difference method in the MATLAB bvp4c solver based on Lobotto quadrature, to scrutinize the significance of thermophoresis parameter, squeezing number, Hartmann number, Prandtl number, and Brownian motion parameter on velocity, temperature, nanoparticle concentration, Nusselt number, factor of friction, and Sherwood number distributions. The obtained results for the friction factor are validated against previously published results. It is found that friction factor at the disk increases with intensity in applied magnetic field. The haphazard (Brownian) motion of nanoparticles causes an enhancement in thermal field. Suction and injection are found to induce different effects on transport characteristics depending on the specification of equal or unequal Biot numbers at the disks. The main quantitative outcome is that, unequal Biot numbers produce significant cooling of the regime for both cases of disk suction or injection, indicating that Robin boundary conditions yield substantial deviation from conventional thermal boundary conditions. Higher thermophoretic parameter also elevates temperatures in the regime. The nanoparticles concentration at the disk is boosted with higher values of Brownian motion parameter. The response of temperature is similar in both suction and injection cases; however, this tendency is quite opposite for nanoparticle concentrations. In the core zone, the resistive magnetic body force dominates and this manifests in a significant reduction in velocity, that is damping. The heat build-up in squeeze films (which can lead to corrosion and degradation of surfaces) can be successfully removed with magnetic nanoparticles leading to prolonged serviceability of lubrication systems and the need for less maintenance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdulaziz Alsenafi ◽  
O. Anwar Bég ◽  
M. Ferdows ◽  
Tasveer A. Bég ◽  
A. Kadir

AbstractA mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno’s two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter $$({c}_{2})$$ ( c 2 ) , thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter $$(Nt)$$ ( N t ) , Brownian motion parameter $$(Nb)$$ ( N b ) , Lewis number $$(Le)$$ ( L e ) , bioconvection Schmidt number $$(Sc)$$ ( S c ) , bioconvection constant (σ) and bioconvection Péclet number $$(Pe)$$ ( P e ) . Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter ($${\mathrm{c}}_{2})$$ c 2 ) whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter ($${\mathrm{c}}_{4})$$ c 4 ) whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter ($${c}_{6}$$ c 6 ) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent ($$m),$$ m ) , skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter ($${\mathrm{c}}_{8}$$ c 8 ) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection Péclet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249264
Author(s):  
Arshad Khan ◽  
Wiyada Kumam ◽  
Imran Khan ◽  
Anwar Saeed ◽  
Taza Gul ◽  
...  

This work addresses the ability to manage the distribution of heat transmission for fluid flow occurs upon a paraboloid thin shaped hot needle by using hybrid nanoparticles containing Copper Oxide (CuO) and Silver (Ag) with water as pure fluid. The needle is placed horizontally in nanofluid with an application of Hall current and viscous dissipation. The popular Buongiorno model has employed in the current investigation in order to explore the impact of Brownian and thermophoretic forces exerted by the fluid. The modeled equations with boundary conditions are transformed to non-dimensional form by incorporating a suitable group of similarity variables. This set of ordinary differential equations is then solved by employing homotopy analysis method (HAM). After detail study of the current work, it has established that the flow of fluid reduces with growth in magnetic effects and volume fractions of nanoparticles. Thermal characteristics increase with augmentation of Eckert number, magnetic field, volume fractions of nanoparticles, Brownian motion parameter and decline with increase in Prandtl number. Moreover, concentration of nanoparticles reduces with corresponding growth in Lewis number and thermophoresis, chemical reaction parameters while increases with growth in Brownian motion parameter.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hassan Waqas ◽  
Umair Manzoor ◽  
Zahir Shah ◽  
Muhammad Arif ◽  
Meshal Shutaywi

Background. The study of nanofluid gains interest of researchers because of its uses in treatment of cancer, wound treatment, fuel reserves, and elevating the particles in the bloodstream to a tumour. This artefact investigates the magnetohydrodynamic flow of Burgers nanofluid with the interaction of nonlinear thermal radiation, activation energy, and motile microorganisms across a stretching cylinder. Method. The developed partial differential equations (PDEs) are transformed into a structure of ODEs with the help of similarity transformation. The extracted problem is rectified numerically by using the bvp4c program in computational software MATLAB. The novelty of analysis lies in the fact that the impacts of bioconvection with magnetic effects on Burgers nanofluid are taken into account. Moreover, the behaviours of thermal conductivity and diffusivity are discussed in detail. The impacts of activation energy and motile microorganism are also explored. No work has been published yet in the literature survey according to the authors’ knowledge. The current observation is the extension of Khan et al.’s work [51]. Results. The consequences of the relevant parameters, namely, thermophoresis parameter, Brownian motion parameter, the reaction parameter, temperature difference parameter, activation energy, bioconvection Lewis number and Peclet number against the velocity of Burgers nanofluid, temperature profile for nanoliquid, the concentration of nanoparticles, and microorganisms field, have been explored in depth. The reports had major impacts in the development of medications for the treatment of arterial diseases including atherosclerosis without any need for surgery, which may reduce spending on cardiovascular and postsurgical problems in patients. Conclusions. The current investigation depicts that fluid velocity increases for uplifting values of mixed convection parameter. Furthermore, it is analyzed that flow of fluid is risen by varying the amount of Burgers fluid parameter. The temperature distribution is escalated by escalating the values of temperature ratio parameter and thermal conductivity parameter. The concentration field turns down for elevated values of Lewis number and Brownian motion parameter, while conflicting circumstances are observed for the thermophoresis parameter and solutal Biot number. Larger values of Peclet number reduce the microorganism’s field. Physically the current model is more significant in the field of applied mathematics. Furthermore, the current model is more helpful to improve the thermal conductivity of base fluids and heat transfer rate.


2020 ◽  
Vol 17 (1) ◽  
pp. 31-38
Author(s):  
K. Maruthi Prasad ◽  
Prabhaker Reddy Yasa

In this paper, the effect of slip on Micropolar fluid in a circular tube of non-uniform cross-section with multiple stenosis have been studied. The coupled equations governing to the flow are calculated by using Homotopy Perturbation Method. The effects of various parameters with heights of the stenosis on the resistance to the flow and wall shear stress have been studied by deriving the expressions for the flow characteristics and their solutions have been obtained. It is found that the resistance to the flow increases with the heights of the stenosis, inclination, Thermophoresis parameter, local temperature Grashof number, local nanoparticle Grashof number, inclination and permeability constant and decreases with Brownian motion parameter. It is found that the shear stress at the wall increases with heights of the stenosis, Brownian motion parameter but decreases with local nanoparticle Grashof number, Thermophoresis parameter and permeability constant. Also, it is observed that the volume of the bolus increases with the increase of permeability constant.


2020 ◽  
Vol 36 (4) ◽  
pp. 535-549
Author(s):  
Challa Kalyan Kumar ◽  
Suripeddi Srinivas ◽  
Anala Subramanyam Reddy

ABSTRACTIn this investigation, the magnetohydrodynamic pulsatile flow of Casson nanofluid through a vertical channel embedded in porous medium with thermal radiation and heat generation/absorption has been analyzed using Buongiorno model. The influence of viscous and Joules dissipations are taken into account. The governing coupled partial differential equations are reduced to ordinary differential equations using perturbation scheme and then solved numerically by using Runge-Kutta fourth order technique along with shooting method. The impact of various emerging parameters on velocity, temperature, nanoparticles concentration, Nusselt number and Sherwood number distributions are analyzed in detail. Analysis indicates that the temperature distribution increases for a given increase in Brownian motion parameter and thermophoresis parameter, while it decreases with an increase in Hartmann number. Further, the nanoparticles concentration distribution decreases with an increase in the chemical reaction parameter and the Lewis number, while it increases for a given increase in the Brownian motion parameter.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Asifa Tassaddiq ◽  
Ibni Amin ◽  
Meshal Shutaywi ◽  
Zahir Shah ◽  
Farhad Ali ◽  
...  

In this article a couple stress magneto-hydrodynamic (MHD) nanofluid thin film flow over an exponential stretching sheet with joule heating and viscous dissipation is considered. Similarity transformations were used to obtain a non-linear coupled system of ordinary differential equations (ODEs) from a system of constitutive partial differential equations (PDEs). The system of ordinary differential equations of couple stress magneto-hydrodynamic (MHD) nanofluid flow was solved using the well-known Homotopy Analysis Method (HAM). Nusselt and Sherwood numbers were demonstrated in dimensionless forms. At zero Prandtl number the velocity profile was analytically described. Furthermore, the impact of different parameters over different state variables are presented with the help of graphs. Dimensionless numbers like magnetic parameter M, Brownian motion parameter Nb, Prandtl number Pr, thermophoretic parameter Nt, Schmidt number Sc, and rotation parameter S were analyzed over the velocity, temperature, and concentration profiles. It was observed that the magnetic parameter M increases the axial, radial, drainage, and induced profiles. It was also apparent that Nu reduces with greater values of Pr. On increasing values of the Brownian motion parameter the concentration profile declines, while the thermophoresis parameter increases.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 213 ◽  
Author(s):  
Arshad Riaz ◽  
Ayesha Gul ◽  
Ilyas Khan ◽  
Katta Ramesh ◽  
Sami Ullah Khan ◽  
...  

In this manuscript, the authors developed the mathematical model for entropy generation analysis during the peristaltic propulsion of Jeffrey nanofluids passing in a midst of two eccentric asymmetric annuli. The model was structured by implementation of lubrication perspective and dimensionless strategy. Entropy generation caused by the irreversible influence of heat and mass transfer of nanofluid and viscous dissipation of the considered liquid was taken into consideration. The governing equations were handled by a powerful analytical technique (HPM). The comparison of total entropy with the partial entropy was also invoked by discussing Bejan number results. The influence of various associated variables on the profiles of velocity, temperature, nanoparticle concentration, entropy generation and Bejan number was formulated by portraying the figures. Mainly from graphical observations, we analyzed that, in the matter of thermophoresis parameter and Brownian motion parameter, entropy generation is thoroughly enhanced while inverse readings were reported for the temperature difference parameter and the ratio of temperature to concentration parameters.


Sign in / Sign up

Export Citation Format

Share Document